Junction type representations of the Temperley-Lieb algebra and associated symmetries.
We study dimensional left-covariant differential calculi on the quantum group . In this way we obtain four classes of differential calculi which are algebraically much simpler as the bicovariant calculi. The algebra generated by the left-invariant vector fields has only quadratic-linear relations and posesses a Poincaré-Birkhoff-Witt basis. We use the concept of universal (higher order) differential calculus associated with a given left-covariant first order differential calculus. It turns out...
We find the limit distributions for a spectrum of a system of n particles governed by a k-body interaction. The hamiltonian of this system is modelled by a Gaussian random matrix. We show that the limit distribution is a q-deformed Gaussian distribution with the deformation parameter q depending on the fraction k/√n. The family of q-deformed Gaussian distributions include the Gaussian distribution and the semicircular law; therefore our result is a generalization of the results of Wigner [Wig1,...
The notion of deformation quantization was introduced by F.Bayen, M.Flato et al. in [1]. The basic idea is to formally deform the pointwise commutative multiplication in the space of smooth functions on a symplectic manifold to a noncommutative associative multiplication, whose first order commutator is proportional to the Poisson bracket. It is of interest to compute this quantization for naturally occuring cases. In this paper, we discuss deformations of contact algebras and give a definition...
We introduce noncommutative extensions of the Fourier transform of probability measures and its logarithm to the algebra (S) of complex-valued functions on the free semigroup S = FS(z,w) on two generators. First, to given probability measures μ, ν with all moments finite, we associate states μ̂, ν̂ on the unital free *-bialgebra (ℬ,ε,Δ) on two self-adjoint generators X,X’ and a projection P. Then we introduce and study cumulants which are additive under the convolution μ̂* ν̂ = μ̂ ⊗ ν̂ ∘ Δ when...
Recent results of M. Junge and Q. Xu on the ergodic properties of the averages of kernels in noncommutative -spaces are applied to the analysis of almost uniform convergence of operators induced by convolutions on compact quantum groups.
The model of generalized quons is described in an algebraic way as certain quasiparticle states with statistics determined by a commutation factor on an abelian group. Quantization is described in terms of quantum Weyl algebras. The corresponding commutation relations and scalar product are also given.