The singularities of Yang-Mills connections for bundles on a surface.
The geometric description of Yang–Mills theories and their configuration space is reviewed. The presence of singularities in M is explained and some of their properties are described. The singularity structure is analysed in detail for structure group SU(2). This review is based on [28].
We analyse some non-perturbative properties of the Yang-Mills vacuum in two-dimensional spaces in the presence of Chern-Simons interactions. We show that the vacuum functional vanishes for some gauge field configurations. We have identified some of those nodal configurations which are characterized by the property of carrying a non-trivial magnetic charge. In abelian gauge theories this fact explains why magnetic monopoles are suppressed by Chern-Simons interactions. In non-abelian theories it suggests...
We provide a mathematical proof of the existence of traveling vortex rings solutions to the Gross–Pitaevskii (GP) equation in dimension . We also extend the asymptotic analysis of the free field Ginzburg–Landau equation to a larger class of equations, including the Ginzburg–Landau equation for superconductivity as well as the traveling wave equation for GP. In particular we rigorously derive a curvature equation for the concentration set (i.e. line vortices if ).