Page 1

Displaying 1 – 6 of 6

Showing per page

Gelation in coagulation and fragmentation models.

Miguel Escobedo (2002)

RACSAM

We first present very elementary relations between climate and aerosols. The we introduce the homogeneous coagulation equation as a simple model to describe systems of merging particles like polymers or aerosols. We next give a recent result about gelation of solutions. We end with some related open questions.

Global existence versus blow up for some models of interacting particles

Piotr Biler, Lorenzo Brandolese (2006)

Colloquium Mathematicae

We study the global existence and space-time asymptotics of solutions for a class of nonlocal parabolic semilinear equations. Our models include the Nernst-Planck and Debye-Hückel drift-diffusion systems as well as parabolic-elliptic systems of chemotaxis. In the case of a model of self-gravitating particles, we also give a result on the finite time blow up of solutions with localized and oscillating complex-valued initial data, using a method due to S. Montgomery-Smith.

Growth and accretion of mass in an astrophysical model

Piotr Biler (1995)

Applicationes Mathematicae

We study asymptotic behavior of radial solutions of a nonlocal Fokker-Planck equation describing the evolution of self-attracting particles. In particular, we consider stationary solutions in balls and in the whole space, self-similar solutions defined globally in time, blowing up self-similar solutions, and singularities of solutions that blow up in a finite time.

Growth and accretion of mass in an astrophysical model, II

Piotr Biler, Tadeusz Nadzieja (1995)

Applicationes Mathematicae

Radially symmetric solutions of a nonlocal Fokker-Planck equation describing the evolution of self-attracting particles in a bounded container are studied. Conditions ensuring either global-in-time existence of solutions or their finite time blow up are given.

Currently displaying 1 – 6 of 6

Page 1