Nonlinear nonlocal parabolic equations modeling the evolution of density of mutually interacting particles are considered. The inertial type nonlinearity is quadratic and nonlocal while the diffusive term, also nonlocal, is anomalous and fractal, i.e., represented by a fractional power of the Laplacian. Conditions for global in time existence versus finite time blow-up are studied. Self-similar solutions are constructed for certain homogeneous initial data. Monte Carlo approximation schemes by interacting...