Un modèle du votant en milieu aléatoire
Page 1
Ellen Saada (1995)
Annales de l'I.H.P. Probabilités et statistiques
Darío Maravall Casesnoves (1985)
Trabajos de Estadística e Investigación Operativa
Se expone la geometría diferencial del espacio de las velocidades relativistas y se obtiene la función de distribución de velocidades de un gas de partículas relativistas, que modifica la función de Maxwell de Mecánica Estadística Clásica. Se introducen los espacios de Hilbert-Lobatschewsky.
Alejandro F. Ramírez (2002)
ESAIM: Probability and Statistics
Consider an infinite dimensional diffusion process process on , where is the circle, defined by the action of its generator on local functions as . Assume that the coefficients, and are smooth, bounded, finite range with uniformly bounded second order partial derivatives, that is only a function of and that . Suppose is an invariant product measure. Then, if is the Lebesgue measure or if , it is the unique invariant measure. Furthermore, if is translation invariant, then...
Alejandro F. Ramírez (2010)
ESAIM: Probability and Statistics
Consider an infinite dimensional diffusion process process on TZd, where T is the circle, defined by the action of its generator L on C2(TZd) local functions as . Assume that the coefficients, ai and bi are smooth, bounded, finite range with uniformly bounded second order partial derivatives, that ai is only a function of and that . Suppose ν is an invariant product measure. Then, if ν is the Lebesgue measure or if d=1,2, it is the unique invariant measure. Furthermore, if ν is translation...
Duerre, Maximilian (2006)
Electronic Communications in Probability [electronic only]
Ivan Corwin, Patrik L. Ferrari, Sandrine Péché (2012)
Annales de l'I.H.P. Probabilités et statistiques
There has been much success in describing the limiting spatial fluctuations of growth models in the Kardar–Parisi–Zhang (KPZ) universality class. A proper rescaling of time should introduce a non-trivial temporal dimension to these limiting fluctuations. In one-dimension, the KPZ class has the dynamical scaling exponent z = 3/2, that means one should find a universal space–time limiting process under the scaling of time as tT, space like t2/3X and fluctuations like t1/3 as t → ∞. In this paper we...
Page 1