The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider the approximation of a mean field stochastic process by a large interacting particle system. We derive non-asymptotic large deviation bounds
measuring the concentration of the empirical measure of the paths of the particles around the law of the process. The method is based on a coupling argument, strong integrability estimates on the paths in Hölder norm, and a general concentration result for the empirical measure of identically distributed independent paths.
For a sequence of i.i.d. random variables {ξx: x∈ℤ} bounded above and below by strictly positive finite constants, consider the nearest-neighbor one-dimensional simple exclusion process in which a particle at x (resp. x+1) jumps to x+1 (resp. x) at rate ξx. We examine a quenched non-equilibrium central limit theorem for the position of a tagged particle in the exclusion process with bond disorder {ξx: x∈ℤ}. We prove that the position of the tagged particle converges under diffusive scaling to a...
Currently displaying 1 –
2 of
2