Page 1

Displaying 1 – 9 of 9

Showing per page

The mean-field limit for the dynamics of large particle systems

François Golse (2003)

Journées équations aux dérivées partielles

This short course explains how the usual mean-field evolution PDEs in Statistical Physics - such as the Vlasov-Poisson, Schrödinger-Poisson or time-dependent Hartree-Fock equations - are rigorously derived from first principles, i.e. from the fundamental microscopic models that govern the evolution of large, interacting particle systems.

Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation

François Bolley, Arnaud Guillin, Florent Malrieu (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a Vlasov-Fokker-Planck equation governing the evolution of the density of interacting and diffusive matter in the space of positions and velocities. We use a probabilistic interpretation to obtain convergence towards equilibrium in Wasserstein distance with an explicit exponential rate. We also prove a propagation of chaos property for an associated particle system, and give rates on the approximation of the solution by the particle system. Finally, a transportation inequality...

Currently displaying 1 – 9 of 9

Page 1