Modeling and forecasting the peak flows of a river.
We present here a series of works which aims at describing geophysical flows in the equatorial zone, taking into account the dominating influence of the earth rotation. We actually proceed by successive approximations computing for each model the response of the fluid to the strong Coriolis penalisation. The main difficulty is due to the spatial variations of the Coriolis acceleration : in particular, as it vanishes at the equator, fast oscillations are trapped in a thin strip of latitudes.
As a first draft of a model for a river flowing on a homogeneous porous ground, we consider a system where the Darcy and Stokes equations are coupled via appropriate matching conditions on the interface. We propose a discretization of this problem which combines the mortar method with standard finite elements, in order to handle separately the flow inside and outside the porous medium. We prove a priori and a posteriori error estimates for the resulting discrete problem. Some numerical experiments...
The first part of this paper reviews the single time scale/multiple length scale low Mach number asymptotic analysis by Klein (1995, 2004). This theory explicitly reveals the interaction of small scale, quasi-incompressible variable density flows with long wave linear acoustic modes through baroclinic vorticity generation and asymptotic accumulation of large scale energy fluxes. The theory is motivated by examples from thermoacoustics and combustion. In an almost obvious way specializations of this...
The first part of this paper reviews the single time scale/multiple length scale low Mach number asymptotic analysis by Klein (1995, 2004). This theory explicitly reveals the interaction of small scale, quasi-incompressible variable density flows with long wave linear acoustic modes through baroclinic vorticity generation and asymptotic accumulation of large scale energy fluxes. The theory is motivated by examples from thermoacoustics and combustion. In an almost obvious way specializations of...
Bayesian probability theory provides a framework for data modeling. In this framework it is possible to find models that are well-matched to the data, and to use these models to make nearly optimal predictions. In connection to neural networks and especially to neural network learning, the theory is interpreted as an inference of the most probable parameters for the model and the given training data. This article describes an application of Neural Networks using the Bayesian training to the problem...
This work deals with the study of some stratigraphic models for the formation of geological basins under a maximal erosion rate constrain. It leads to introduce differential inclusions of degenerated hyperbolic-parabolic type , where H is the maximal monotonous graph of the Heaviside function and E is a given non-negative function. Firstly, we present the new and realistic models and an original mathematical formulation, taking into account the weather-limited rate constraint in the conservation...
En estas notas presentamos algunos modelos físicos que han sido propuestos recientemente para tratar el problema de los movimientos repentinos y casi periódicos del hielo, así como la aparición de corrientes de hielo rápidas en los grandes mantos glaciares que se deslizan sobre lechos blandos y deformables. Estos fenómenos están relacionados con la transición de un régimen de flujo lento a uno rápido y pueden aparecer debido a una modificación del sistema de drenaje del glaciar. Los fenómenos en...
A new set of nonlocal boundary conditions is proposed for the higher modes of the 3D inviscid primitive equations. Numerical schemes using the splitting-up method are proposed for these modes. Numerical simulations of the full nonlinear primitive equations are performed on a nested set of domains, and the results are discussed.
A new set of nonlocal boundary conditions is proposed for the higher modes of the 3D inviscid primitive equations. Numerical schemes using the splitting-up method are proposed for these modes. Numerical simulations of the full nonlinear primitive equations are performed on a nested set of domains, and the results are discussed.
Mathematical modeling provides a particularly important tool for studying the stream runoff formation processes, and its role is enhanced in the case of a sparse, obsolete monitoring network characteristic of most regions of Siberia. When analyzing spatio-temporal regularities of the water and sediment runoff in river systems, serious problems are caused by lack of the basic hydrological model capable of handling real-time data of hydrological measurements. Calculations of unsteady flows in stream...
Presentamos un modelo numérico unidimensional para flujos bicapa que se ha desarrollado para la simulación de flujos a través de canales con geometría irregular tanto en anchura como en profundidad. Este modelo se utiliza para el estudio y simulación de las mareas internas que tienen lugar en el Estrecho de Gibraltar. En primer lugar presentaremos las ecuaciones del modelo y el esquema numérico que se usa para su resolución. A continuación evaluaremos el buen hacer del modelo numérico comparando...
The motion of a three-dimensional glacier is considered. Ice is modeled as an incompressible non-Newtonian fluid. At each time step, given the shape of the glacier, a nonlinear elliptic system has to be solved in order to obtain the two components of the horizontal velocity field. Then, the shape of the glacier is updated by solving a transport equation. Finite element techniques are used to compute the velocity field and to solve the transport equation. Numerical results are compared to experiments...