Displaying 101 – 120 of 319

Showing per page

Simulated Annealing and Tabu Search for Discrete-Continuous Project Scheduling with Discounted Cash Flows

Grzegorz Waligóra (2014)

RAIRO - Operations Research - Recherche Opérationnelle

Discrete-continuous project scheduling problems with positive discounted cash flows and the maximization of the NPV are considered. We deal with a class of these problems with an arbitrary number of discrete resources and one continuous, renewable resource. Activities are nonpreemptable, and the processing rate of an activity is a continuous, increasing function of the amount of the continuous resource allotted to the activity at a time. Three common payment models – Lump Sum Payment, Payments at...

Simultaneous routing and flow rate optimization in energy-aware computer networks

Przemysław Jaskóła, Piotr Arabas, Andrzej Karbowski (2016)

International Journal of Applied Mathematics and Computer Science

The issue of energy-aware traffic engineering has become prominent in telecommunications industry in the last years. This paper presents a two-criteria network optimization problem, in which routing and bandwidth allocation are determined jointly, so as to minimize the amount of energy consumed by a telecommunication infrastructure and to satisfy given demands represented by a traffic matrix. A scalarization of the criteria is proposed and the choice of model parameters is discussed in detail. The...

Simultaneous solution of linear equations and inequalities in max-algebra

Abdulhadi Aminu (2011)

Kybernetika

Let a ø p l u s b = max ( a , b ) and a ø t i m e s b = a + b for a , b . Max-algebra is an analogue of linear algebra developed on the pair of operations ( ø p l u s , ø t i m e s ) extended to matrices and vectors. The system of equations A ø t i m e s x = b and inequalities C ø t i m e s x ł e q d have each been studied in the literature. We consider a problem consisting of these two systems and present necessary and sufficient conditions for its solvability. We also develop a polynomial algorithm for solving max-linear program whose constraints are max-linear equations and inequalities.

Single machine preemptive scheduling to minimize the weighted number of late jobs with deadlines and nested release/due date intervals

Valery S. Gordon, F. Werner, O. A. Yanushkevich (2001)

RAIRO - Operations Research - Recherche Opérationnelle

This paper is devoted to the following version of the single machine preemptive scheduling problem of minimizing the weighted number of late jobs. A processing time, a release date, a due date and a weight of each job are given. Certain jobs are specified to be completed in time, i.e., their due dates are assigned to be deadlines, while the other jobs are allowed to be completed after their due dates. The release/due date intervals are nested, i.e., no two of them overlap (either they have at most...

Single Machine Preemptive Scheduling to Minimize the Weighted Number of Late Jobs with Deadlines and Nested Release/Due Date Intervals

Valery S. Gordon, F. Werner, O. A. Yanushkevich (2010)

RAIRO - Operations Research

This paper is devoted to the following version of the single machine preemptive scheduling problem of minimizing the weighted number of late jobs. A processing time, a release date, a due date and a weight of each job are given. Certain jobs are specified to be completed in time, i.e., their due dates are assigned to be deadlines, while the other jobs are allowed to be completed after their due dates. The release/due date intervals are nested, i.e., no two of them overlap (either they have...

Single-use reliability computation of a semi-Markovian system

Guglielmo D'Amico (2014)

Applications of Mathematics

Markov chain usage models were successfully used to model systems and software. The most prominent approaches are the so-called failure state models Whittaker and Thomason (1994) and the arc-based Bayesian models Sayre and Poore (2000). In this paper we propose arc-based semi-Markov usage models to test systems. We extend previous studies that rely on the Markov chain assumption to the more general semi-Markovian setting. Among the obtained results we give a closed form representation of the first...

Slice convergence : stabilité et optimisation dans les espaces non réflexifs

Khalid El Hajioui, Driss Mentagui (2004)

ESAIM: Control, Optimisation and Calculus of Variations

Il est démontré par Mentagui [ESAIM : COCV 9 (2003) 297-315] que, dans le cas des espaces de Banach généraux, la convergence d’Attouch-Wets est stable par une classe d’opérations classiques de l’analyse convexe, lorsque les limites des suites d’ensembles et de fonctions satisfont certaines conditions de qualification naturelles. Ceci tombe en défaut avec la slice convergence. Dans cet article, nous établissons des conditions de qualification uniformes assurant la stabilité de la slice convergence...

Slice convergence: stabilité et optimisation dans les espaces non réflexifs

Khalid El Hajioui, Driss Mentagui (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Il est démontré par Mentagui [ESAIM: COCV9 (2003) 297-315] que, dans le cas des espaces de Banach généraux, la convergence d'Attouch-Wets est stable par une classe d'opérations classiques de l'analyse convexe, lorsque les limites des suites d'ensembles et de fonctions satisfont certaines conditions de qualification naturelles. Ceci tombe en défaut avec la slice convergence. Dans cet article, nous établissons des conditions de qualification uniformes assurant la stabilité de la slice convergence...

Sliding subspace design based on linear matrix inequalities

Alán Tapia, Raymundo Márquez, Miguel Bernal, Joaquín Cortez (2014)

Kybernetika

In this work, an alternative for sliding surface design based on linear and bilinear matrix inequalities is proposed. The methodology applies for reduced and integral sliding mode control, both continuous- and discrete-time; it takes advantage of the Finsler's lemma to provide a greater degree of freedom than existing approaches for sliding subspace design. The sliding surfaces thus constructed are systematically found via convex optimization techniques, which are efficiently implemented in commercially...

Smoothing a polyhedral convex function via cumulant transformation and homogenization

Alberto Seeger (1997)

Annales Polonici Mathematici

Given a polyhedral convex function g: ℝⁿ → ℝ ∪ +∞, it is always possible to construct a family g t > 0 which converges pointwise to g and such that each gₜ: ℝⁿ → ℝ is convex and infinitely often differentiable. The construction of such a family g t > 0 involves the concept of cumulant transformation and a standard homogenization procedure.

Currently displaying 101 – 120 of 319