Page 1

Displaying 1 – 5 of 5

Showing per page

Solution of option pricing equations using orthogonal polynomial expansion

Falko Baustian, Kateřina Filipová, Jan Pospíšil (2021)

Applications of Mathematics

We study both analytic and numerical solutions of option pricing equations using systems of orthogonal polynomials. Using a Galerkin-based method, we solve the parabolic partial differential equation for the Black-Scholes model using Hermite polynomials and for the Heston model using Hermite and Laguerre polynomials. We compare the obtained solutions to existing semi-closed pricing formulas. Special attention is paid to the solution of the Heston model at the boundary with vanishing volatility.

Some short elements on hedging credit derivatives

Philippe Durand, Jean-Frédéric Jouanin (2007)

ESAIM: Probability and Statistics

In practice, it is well known that hedging a derivative instrument can never be perfect. In the case of credit derivatives (e.g. synthetic CDO tranche products), a trader will have to face some specific difficulties. The first one is the inconsistence between most of the existing pricing models, where the risk is the occurrence of defaults, and the real hedging strategy, where the trader will protect his portfolio against small CDS spread movements. The second one, which is the main subject of...

Superconvergence estimates of finite element methods for American options

Qun Lin, Tang Liu, Shu Hua Zhang (2009)

Applications of Mathematics

In this paper we are concerned with finite element approximations to the evaluation of American options. First, following W. Allegretto etc., SIAM J. Numer. Anal. 39 (2001), 834–857, we introduce a novel practical approach to the discussed problem, which involves the exact reformulation of the original problem and the implementation of the numerical solution over a very small region so that this algorithm is very rapid and highly accurate. Secondly by means of a superapproximation and interpolation...

Currently displaying 1 – 5 of 5

Page 1