Univerzální přírodní tvary
A number of exciting new laboratory techniques have been developed using the Watson-Crick complementarity properties of DNA strands to achieve the self-assembly of graphical complexes. For all of these methods, an essential step in building the self-assembling nanostructure is designing the component molecular building blocks. These design strategy problems fall naturally into the realm of graph theory. We describe graph theoretical formalism for various construction methods, and then suggest several...
Linear oscillators are used for modeling a diverse array of natural systems, for instance acoustics, materials science, and chemical spectroscopy. In this paper I describe simple models of structural interactions in biological molecules, known as elastic network models, as a useful topic for undergraduate biology instruction in mathematical modeling. These models use coupled linear oscillators to model the fluctuations of molecular structures around the equilibrium state. I present many learning...
In this paper we build and analyze networks using the statistical and programming environment R and the igraph package. We investigate random, small-world, and scale-free networks and test a standard problem of connectivity on a random graph. We then develop a method to study how vaccination can alter the structure of a disease transmission network. We also discuss a variety of other uses for networks in biology.