Existence and stability of almost periodic solutions for shunting inhibitory cellular neural networks with continuously distributed delays.
We give some results on the existence, uniqueness and regularity of a nonlinear evolution system. This system models the viscoelastic behaviour of unicellular marine alga Acetabularia mediterrania when the calcium concentration varies. We show (with the aid of a fixed-point theorem) that the system admits a unique local solution in time.
This paper explores the problem of delay-independent and delay-dependent stability for a class of complex-valued neutral-type neural networks with time delays. Aiming at the neutral-type neural networks, an appropriate function is constructed to derive the existence of equilibrium point. On the basis of homeomorphism theory, Lyapunov functional method and linear matrix inequality techniques, several LMI-based sufficient conditions on the existence, uniqueness and global asymptotic stability of equilibrium...
We study delay shunting inhibitory cellular neural networks without almost periodic coefficients. Some sufficient conditions are established to ensure that all solutions of the networks converge exponentially to an almost periodic function. This complements previously known results.