The search session has expired. Please query the service again.
Bidomain models are commonly used for studying and simulating electrophysiological waves in the cardiac tissue. Most of the time, the associated PDEs are solved using explicit finite difference methods on structured grids. We propose an implicit finite element method using unstructured grids for an anisotropic bidomain model. The impact and numerical requirements of unstructured grid methods is investigated using a test case with re-entrant waves.
Bidomain models are commonly used for studying and simulating
electrophysiological waves in the cardiac tissue. Most of the
time, the associated PDEs are solved using explicit finite
difference methods on structured grids. We propose an implicit
finite element method using unstructured grids for an anisotropic
bidomain model. The impact and numerical requirements of
unstructured grid methods is investigated using a test case
with re-entrant waves.
In this note we give a result of convergence when time goes to infinity for a
quasi static linear elastic model, the elastic tensor of which vanishes at
infinity. This method is applied to segmentation of medical images, and improves
the 'elastic deformable template' model introduced previously.
A suitable Liapunov function is constructed for proving that the unique critical point of a non-linear system of ordinary differential equations, considered in a well determined polyhedron , is globally asymptotically stable in . The analytic problem arises from an investigation concerning a steady state in a particular macromolecular system: the visual system represented by the pigment rhodopsin in the presence of light.
Currently displaying 1 –
4 of
4