Page 1

Displaying 1 – 3 of 3

Showing per page

Model based analysis of signaling pathways

Jarosław Smieja (2008)

International Journal of Applied Mathematics and Computer Science

The paper is concerned with application of mathematical modeling to the analysis of signaling pathways. Two issues, deterministic modeling of gene transcription and model-driven discovery of regulatory elements, are dealt with. First, the biological background is given and the importance of the stochastic nature of biological processes is addressed. The assumptions underlying deterministic modeling are presented. Special emphasis is put on describing gene transcription. A framework for including...

Modeling Morphogenesis in silico and in vitro: Towards Quantitative, Predictive, Cell-based Modeling

R. M. H. Merks, P. Koolwijk (2009)

Mathematical Modelling of Natural Phenomena

Cell-based, mathematical models help make sense of morphogenesis—i.e. cells organizing into shape and pattern—by capturing cell behavior in simple, purely descriptive models. Cell-based models then predict the tissue-level patterns the cells produce collectively. The first step in a cell-based modeling approach is to isolate sub-processes, e.g. the patterning capabilities of one or a few cell types in cell cultures. Cell-based models can then identify the mechanisms responsible for patterning in...

Modelling the Spread of Infectious Diseases in Complex Metapopulations

J. Saldaña (2010)

Mathematical Modelling of Natural Phenomena

Two main approaches have been considered for modelling the dynamics of the SIS model on complex metapopulations, i.e, networks of populations connected by migratory flows whose configurations are described in terms of the connectivity distribution of nodes (patches) and the conditional probabilities of connections among classes of nodes sharing the same degree. In the first approach migration and transmission/recovery process alternate sequentially,...

Currently displaying 1 – 3 of 3

Page 1