Asymptotic behavior of a delay predator-prey system with stage structure and variable coefficients.
A simple model of phenotypic evolution is introduced and analysed in a space of population states. The expected values of the population states generate a discrete dynamical system. The asymptotic behaviour of the system is studied with the use of classical tools of dynamical systems. The number, location and stability of fixed points of the system depend on parameters of a fitness function and the parameters of the evolutionary process itself. The influence of evolutionary process parameters on...
Asymptotic convergence theorems for semigroups of nonnegative operators on a Banach lattice, on C(X) and on (1 ≤ p ≤ ∞) are proved. The general results are applied to a class of semigroups generated by some differential equations.
We present a robust method which translates information on the speed of coming down from infinity of a genealogical tree into sampling formulae for the underlying population. We apply these results to population dynamics where the genealogy is given by a -coalescent. This allows us to derive an exact formula for the asymptotic behavior of the site and allele frequency spectrum and the number of segregating sites, as the sample size tends to . Some of our results hold in the case of a general -coalescent...