Page 1

Displaying 1 – 2 of 2

Showing per page

Macroscopic models of collective motion and self-organization

Pierre Degond, Amic Frouvelle, Jian-Guo Liu, Sebastien Motsch, Laurent Navoret (2012/2013)

Séminaire Laurent Schwartz — EDP et applications

In this paper, we review recent developments on the derivation and properties of macroscopic models of collective motion and self-organization. The starting point is a model of self-propelled particles interacting with its neighbors through alignment. We successively derive a mean-field model and its hydrodynamic limit. The resulting macroscopic model is the Self-Organized Hydrodynamics (SOH). We review the available existence results and known properties of the SOH model and discuss it in view...

Modelling and Mathematical Analysis of the Glass Eel Migration in the Adour River Estuary

M. Odunlami, G. Vallet (2012)

Mathematical Modelling of Natural Phenomena

In this paper we are interested in a mathematical model of migration of grass eels in an estuary. We first revisit a previous model proposed by O. Arino and based on a degenerate convection-diffusion equation of parabolic-hyperbolic type with time-varying subdomains. Then, we propose an adapted mathematical framework for this model, we prove a result of existence of a weak solution and we propose some numerical simulations.

Currently displaying 1 – 2 of 2

Page 1