Previous Page 2

Displaying 21 – 33 of 33

Showing per page

On Oscillatory Instability in Convective Burning of Gas-Permeable Explosives

I. Brailovsky, M. Frankel, L. Kagan, G. Sivashinsky (2010)

Mathematical Modelling of Natural Phenomena

The experimentally known phenomenon of oscillatory instability in convective burning of porous explosives is discussed. A simple phenomenological model accounting for the ejection of unburned particles from the consolidated charge is formulated and analyzed. It is shown that the post-front hydraulic resistance induced by the ejected particles provides a mechanism for the oscillatory burning.

Optimal chemical balance weighing designs for v + 1 objects

Bronisław Ceranka, Małgorzata Graczyk (2003)

Kybernetika

The paper studies the estimation problem of individual weights of objects using a chemical balance weighing design under the restriction on the number times in which each object is weighed. Conditions under which the existence of an optimum chemical balance weighing design for p = v objects implies the existence of an optimum chemical balance weighing design for p = v + 1 objects are given. The existence of an optimum chemical balance weighing design for p = v + 1 objects implies the existence of an optimum chemical...

Pattern Formation Induced by Time-Dependent Advection

A. V. Straube, A. Pikovsky (2010)

Mathematical Modelling of Natural Phenomena

We study pattern-forming instabilities in reaction-advection-diffusion systems. We develop an approach based on Lyapunov-Bloch exponents to figure out the impact of a spatially periodic mixing flow on the stability of a spatially homogeneous state. We deal with the flows periodic in space that may have arbitrary time dependence. We propose a discrete in time model, where reaction, advection, and diffusion act as successive operators, and show that...

Currently displaying 21 – 33 of 33

Previous Page 2