Exponential convergence to equilibrium via Lyapounov functionals for reaction-diffusion equations arising from non reversible chemical kinetics
We show that the entropy method, that has been used successfully in order to prove exponential convergence towards equilibrium with explicit constants in many contexts, among which reaction-diffusion systems coming out of reversible chemistry, can also be used when one considers a reaction-diffusion system corresponding to an irreversible mechanism of dissociation/recombination, for which no natural entropy is available.