Displaying 161 – 180 of 204

Showing per page

Redundancy relations for fault diagnosis in nonlinear uncertain systems

Alexey Shumsky (2007)

International Journal of Applied Mathematics and Computer Science

The problem of fault detection and isolation in nonlinear uncertain systems is studied within the scope of the analytical redundancy concept. The problem solution involves checking the redundancy relations existing among measured system inputs and outputs. A novel method is proposed for constructing redundancy relations based on system models described by differential equations whose right-hand sides are polynomials. The method involves a nonlinear transformation of the initial system model into...

Regulation of p53 by siRNA in radiation treated cells: Simulation studies

Krzysztof Puszyński, Roman Jaksik, Andrzej Świerniak (2012)

International Journal of Applied Mathematics and Computer Science

Ionizing radiation activates a large variety of intracellular mechanisms responsible for maintaining appropriate cell functionality or activation of apoptosis which eliminates damaged cells from the population. The mechanism of such induced cellular death is widely used in radiotherapy in order to eliminate cancer cells, although in some cases it is highly limited by increased cellular radio-resistance due to aberrations in molecular regulation mechanisms of malignant cells. Despite the positive...

Robust hierarchical sliding mode control with state-dependent switching gain for stabilization of rotary inverted pendulum

Muhammad Idrees, Shah Muhammad, Saif Ullah (2019)

Kybernetika

The rotary inverted pendulum (RIP) system is one of the fundamental, nonlinear, unstable and interesting benchmark systems in the field of control theory. In this paper, two nonlinear control strategies, namely hierarchical sliding mode control (HSMC) and decoupled sliding mode control (DSMC), are discussed to address the stabilization problem of the RIP system. We introduced HSMC with state-dependent switching gain for stabilization of the RIP system. Numerical simulations are performed to analyze...

Rough modeling - a bottom-up approach to model construction

Terje Loken, Jan Komorowski (2001)

International Journal of Applied Mathematics and Computer Science

Traditional data mining methods based on rough set theory focus on extracting models which are good at classifying unseen obj-ects. If one wants to uncover new knowledge from the data, the model must have a high descriptive quality-it must describe the data set in a clear and concise manner, without sacrificing classification performance. Rough modeling, introduced by Kowalczyk (1998), is an approach which aims at providing models with good predictive emphand descriptive qualities, in addition to...

RTC-method for the control of nuclear reactor power

Wajdi A. Ratemi (1998)

Kybernetika

In this paper, a new concept of the Reactivity Trace Curve (RTC) for reactor power control is presented. The concept is demonstrated for a reactor model with one group of delayed neutrons, where the reactivity trace curve is simply a closed form exponential solution of the RTC-differential equation identifier. An extended reactor model of multigroup (six groups) of delayed neutrons is discussed for power control using the RTC-method which is based on numerical solution of the governing equation...

Scaling of Stochasticity in Dengue Hemorrhagic Fever Epidemics

M. Aguiar, B.W. Kooi, J. Martins, N. Stollenwerk (2012)

Mathematical Modelling of Natural Phenomena

In this paper we analyze the stochastic version of a minimalistic multi-strain model, which captures essential differences between primary and secondary infections in dengue fever epidemiology, and investigate the interplay between stochasticity, seasonality and import. The introduction of stochasticity is needed to explain the fluctuations observed in some of the available data sets, revealing a scenario where noise and complex deterministic skeleton...

Selected multicriteria shortest path problems: an analysis of complexity, models and adaptation of standard algorithms

Zbigniew Tarapata (2007)

International Journal of Applied Mathematics and Computer Science

The paper presents selected multicriteria (multiobjective) approaches to shortest path problems. A classification of multi-objective shortest path (MOSP) problems is given. Different models of MOSP problems are discussed in detail. Methods of solving the formulated optimization problems are presented. An analysis of the complexity of the presented methods and ways of adapting of classical algorithms for solving multiobjective shortest path problems are described. A comparison of the effectiveness...

Signed directed graph based modeling and its validation from process knowledge and process data

Fan Yang, Sirish L. Shah, Deyun Xiao (2012)

International Journal of Applied Mathematics and Computer Science

This paper is concerned with the fusion of information from process data and process connectivity and its subsequent use in fault diagnosis and process hazard assessment. The Signed Directed Graph (SDG), as a graphical model for capturing process topology and connectivity to show the causal relationships between process variables by material and information paths, has been widely used in root cause and hazard propagation analysis. An SDG is usually built based on process knowledge as described by...

Spreadability, Vulnerability and Protector Control

A. Bernoussi (2010)

Mathematical Modelling of Natural Phenomena

In this work, we present some concepts recently introduced in the analysis and control of distributed parameter systems: Spreadability, vulnerability and protector control. These concepts permit to describe many biogeographical phenomena, as those of pollution, desertification or epidemics, which are characterized by a spatio-temporal evolution

Statistical estimation of the dynamics of watershed dams

Zbisław Tabor (2009)

International Journal of Applied Mathematics and Computer Science

In the present study the notion of watershed contour dynamics, defined within the framework of mathematical morphology, is examined. It is shown that the dynamics are a direct measure of the “sharpness” of transition between neighboring watershed basins. The expressions for the expected value and the statistical error of the estimation of contour dynamics are derived in the presence of noise, based on extreme value theory. The sensitivity of contour dynamics to noise is studied. A statistical approach...

Štatistické modelovanie javu El Niño - Južná oscilácia v klimatológii

Nikola Jajcay, Milan Paluš (2017)

Pokroky matematiky, fyziky a astronomie

Pri modelovaní v klimatológii a meteorológii rozlišujeme dva základné druhy modelov — dynamické a štatistické. Dynamické modely majú fyzikálny základ, ktorý pozostáva z diskretizovaných diferenciálnych rovníc a súčasného stavu ako počiatočnej podmienky a následne modelujú stav systému integrovaním týchto rovníc v čase. Štatistické modely sú už v základe odlišné: ich fungovanie sa nezakladá na fyzikálnych mechanizmoch tvoriacich dynamiku modelovaného systému, ale sú odvodené z analýzy chodu počasia...

Suggestion from the Past?

Machado, J., Jesus, Isabel (2004)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 26A33 (main), 35A22, 78A25, 93A30The generalization of the concept of derivative to non-integer values goes back to the beginning of the theory of differential calculus. Nevertheless, its application in physics and engineering remained unexplored up to the last two decades. Recent research motivated the establishment of strategies taking advantage of the Fractional Calculus (FC) in the modeling and control of many phenomena. In fact, many classical engineering...

Currently displaying 161 – 180 of 204