Displaying 261 – 280 of 395

Showing per page

On network models and the symbolic solution of network equations

Kurt Reinschke (2001)

International Journal of Applied Mathematics and Computer Science

This paper gives an overview of the formulation and solution of network equations, with emphasis on the historical development of this area. Networks are mathematical models. The three ingredients of network descriptions are discussed. It is shown how the network equations of one-dimensional multi-port networks can be formulated and solved symbolically. If necessary, the network graph is modified so as to obtain an admittance representation for all kinds of multi-ports. N-dimensional networks are...

On robust consensus of multi-agent systems with communication delays

Jiangping Hu (2009)

Kybernetika

In this paper, two robust consensus problems are considered for a multi-agent system with various disturbances. To achieve the robust consensus, two distributed control schemes for each agent, described by a second-order differential equation, are proposed. With the help of graph theory, the robust consensus stability of the multi-agent system with communication delays is obtained for both fixed and switching interconnection topologies. The results show the leaderless consensus can be achieved with...

On the dynamics of a vaccination model with multiple transmission ways

Shu Liao, Weiming Yang (2013)

International Journal of Applied Mathematics and Computer Science

In this paper, we present a vaccination model with multiple transmission ways and derive the control reproduction number. The stability analysis of both the disease-free and endemic equilibria is carried out, and bifurcation theory is applied to explore a variety of dynamics of this model. In addition, we present numerical simulations to verify the model predictions. Mathematical results suggest that vaccination is helpful for disease control by decreasing the control reproduction number below unity....

On the Mathematical Modelling of Microbial Growth: Some Computational Aspects

Markov, Svetoslav (2011)

Serdica Journal of Computing

We propose a new approach to the mathematical modelling of microbial growth. Our approach differs from familiar Monod type models by considering two phases in the physiological states of the microorganisms and makes use of basic relations from enzyme kinetics. Such an approach may be useful in the modelling and control of biotechnological processes, where microorganisms are used for various biodegradation purposes and are often put under extreme inhibitory conditions. Some computational experiments are...

Optimal decentralized control design with disturbance decoupling

Petros G. Voulgaris (2002)

Kybernetika

In this paper we present an input-output point of view for the problem of closed loop norm minimization of stable plants when a decentralized structure and a disturbance decoupling property are imposed on the controller. We show that this problem is convex and present approaches to its solution in the optimal 1 sense in the nontrivial case which is when the block off- diagonal terms of the plant have more columns than rows.

Optimal resource allocation in a large scale system under soft constraints

Zdzisław Duda (2000)

Kybernetika

In the paper there is discussed a problem of the resource allocation in a large scale system in the presence of the resource shortages. The control task is devided into two levels, with the coordinator on the upper level and local controllers on the lower one. It is assumed that they have different information. The coordinator has an information on mean values of users demands, an inflow forecast and an estimation of the resource amount in a storage reservoir. On the basis on this information it...

Optimal solutions for a model of tumor anti-angiogenesis with a penalty on the cost of treatment

Urszula Ledzewicz, Vignon Oussa, Heinz Schättler (2009)

Applicationes Mathematicae

The scheduling of angiogenic inhibitors to control a vascularized tumor is analyzed as an optimal control problem for a mathematical model that was developed and biologically validated by Hahnfeldt et al. [Cancer Res. 59 (1999)]. Two formulations of the problem are considered. In the first one the primary tumor volume is minimized for a given amount of angiogenic inhibitors to be administered, while a balance between tumor reduction and the total amount of angiogenic inhibitors given is minimized...

Optimization schemes for wireless sensor network localization

Ewa Niewiadomska-Szynkiewicz, Michał Marks (2009)

International Journal of Applied Mathematics and Computer Science

Many applications of wireless sensor networks (WSN) require information about the geographical location of each sensor node. Self-organization and localization capabilities are one of the most important requirements in sensor networks. This paper provides an overview of centralized distance-based algorithms for estimating the positions of nodes in a sensor network. We discuss and compare three approaches: semidefinite programming, simulated annealing and two-phase stochastic optimization-a hybrid...

Currently displaying 261 – 280 of 395