Page 1

Displaying 1 – 16 of 16

Showing per page

Random projection RBF nets for multidimensional density estimation

Ewa Skubalska-Rafajłowicz (2008)

International Journal of Applied Mathematics and Computer Science

The dimensionality and the amount of data that need to be processed when intensive data streams are observed grow rapidly together with the development of sensors arrays, CCD and CMOS cameras and other devices. The aim of this paper is to propose an approach to dimensionality reduction as a first stage of training RBF nets. As a vehicle for presenting the ideas, the problem of estimating multivariate probability densities is chosen. The linear projection method is briefly surveyed. Using random...

Reduced-order Unscented Kalman Filtering with application to parameter identification in large-dimensional systems

Philippe Moireau, Dominique Chapelle (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We propose a general reduced-order filtering strategy adapted to Unscented Kalman Filtering for any choice of sampling points distribution. This provides tractable filtering algorithms which can be used with large-dimensional systems when the uncertainty space is of reduced size, and these algorithms only invoke the original dynamical and observation operators, namely, they do not require tangent operator computations, which of course is of considerable benefit when nonlinear operators are considered....

Reduced-order Unscented Kalman Filtering with application to parameter identification in large-dimensional systems

Philippe Moireau, Dominique Chapelle (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We propose a general reduced-order filtering strategy adapted to Unscented Kalman Filtering for any choice of sampling points distribution. This provides tractable filtering algorithms which can be used with large-dimensional systems when the uncertainty space is of reduced size, and these algorithms only invoke the original dynamical and observation operators, namely, they do not require tangent operator computations, which of course is of considerable benefit when nonlinear operators are considered....

Robust parameter design using the weighted metric method - The case of 'the smaller the better'

Mostafa Kamali Ardakani, Rassoul Noorossana, Seyed Taghi Akhavan Niaki, Homayoun Lahijanian (2009)

International Journal of Applied Mathematics and Computer Science

In process robustness studies, it is desirable to minimize the influence of noise factors on the system and simultaneously determine the levels of controllable factors optimizing the overall response or outcome. In the cases when a random effects model is applicable and a fixed effects model is assumed instead, an increase in the variance of the coefficient vector should be expected. In this paper, the impacts of this assumption on the results of the experiment in the context of robust parameter...

Robust sensor fault estimation for descriptor-LPV systems with unmeasurable gain scheduling functions: application to an anaerobic bioreactor

Francisco-Ronay López-Estrada, Jean-Christophe Ponsart, Didier Theilliol, Carlos-Manuel Astorga-Zaragoza, Jorge-Luis Camas-Anzueto (2015)

International Journal of Applied Mathematics and Computer Science

This paper addresses the design of a state estimation and sensor fault detection, isolation and fault estimation observer for descriptor-linear parameter varying (D-LPV) systems. In contrast to where the scheduling functions depend on some measurable time varying state, the proposed method considers the scheduling function depending on an unmeasurable state vector. In order to isolate, detect and estimate sensor faults, an augmented system is constructed by considering faults to be auxiliary state...

Currently displaying 1 – 16 of 16

Page 1