The search session has expired. Please query the service again.
Principal component analysis (PCA) is a powerful fault detection and isolation method. However, the classical PCA, which is based on the estimation of the sample mean and covariance matrix of the data, is very sensitive to outliers in the training data set. Usually robust principal component analysis is applied to remove the effect of outliers on the PCA model. In this paper, a fast two-step algorithm is proposed. First, the objective was to find an accurate estimate of the covariance matrix of...
This paper considers the problem of attitude sensor fault diagnosis in a quadrotor helicopter. The proposed approach is composed of two stages. The first one is the modelling of the system attitude dynamics taking into account the induced communication constraints. Then a robust fault detection and evaluation scheme is proposed using a post-filter designed under a particular design objective. This approach is compared with previous results based on the standard Kalman filter and gives better results...
This paper is concerned with the design problem of finite-horizon fault estimator for a class of nonlinear time-varying systems with Round-Robin protocol scheduling. The faults are assumed to occur in a random way governed by a Bernoulli distributed white sequence. The communication between the sensor nodes and fault estimators is implemented via a shared network. In order to prevent the data from collisions, a Round-Robin protocol is utilized to orchestrate the transmission of sensor nodes. By...
This paper presents an approach to fault tolerant control based on the sensor masking principle in the case of wireless networked control systems. With wireless transmission, packet losses act as sensor faults. In the presence of such faults, the faulty measurements corrupt directly the behaviour of closed-loop systems. Since the controller aims at cancelling the error between the measurement and its reference input, the real outputs will, in such a networked control system, deviate from the desired...
This paper focuses on the finite-time output feedback control problem for a quad-rotor mini-aircraft system. First, a finite-time state feedback controller is designed by utilizing the finite-time control theory. Then, considering the case that the velocity states are not measurable, a finite-time stable observer is developed to estimate the unmeasurable states. Thus a finite-time output feedback controller is obtained and the stability analysis is provided to ensure the finite-time stability of...
This paper presents a generalization of the Kalman filter for linear and nonlinear fractional order discrete state-space systems. Linear and nonlinear discrete fractional order state-space systems are also introduced. The simplified kalman filter for the linear case is called the fractional Kalman filter and its nonlinear extension is named the extended fractional Kalman filter. The background and motivations for using such techniques are given, and some algorithms are discussed. The paper also...
Currently displaying 1 –
6 of
6