Page 1

Displaying 1 – 2 of 2

Showing per page

Performance analysis of least squares algorithm for multivariable stochastic systems

Ziming Wang, Yiming Xing, Xinghua Zhu (2023)

Kybernetika

In this paper, we consider the parameter estimation problem for the multivariable system. A recursive least squares algorithm is studied by minimizing the accumulative prediction error. By employing the stochastic Lyapunov function and the martingale estimate methods, we provide the weakest possible data conditions for convergence analysis. The upper bound of accumulative regret is also provided. Various simulation examples are given, and the results demonstrate that the convergence rate of the...

Piecewise approximation and neural networks

Martina Révayová, Csaba Török (2007)

Kybernetika

The paper deals with the recently proposed autotracking piecewise cubic approximation (APCA) based on the discrete projective transformation, and neural networks (NN). The suggested new approach facilitates the analysis of data with complex dependence and relatively small errors. We introduce a new representation of polynomials that can provide different local approximation models. We demonstrate how APCA can be applied to especially noisy data thanks to NN and local estimations. On the other hand,...

Currently displaying 1 – 2 of 2

Page 1