General decay stability for stochastic functional differential equations with infinite delay.
A modified version of the classical kernel nonparametric identification algorithm for nonlinearity recovering in a Hammerstein system under the existence of random noise is proposed. The assumptions imposed on the unknown characteristic are weak. The generalized kernel method proposed in the paper provides more accurate results in comparison with the classical kernel nonparametric estimate, regardless of the number of measurements. The convergence in probability of the proposed estimate to the unknown...
We study stochastically perturbed non-holonomic systems from a geometric point of view. In this setting, it turns out that the probabilistic properties of the perturbed system are intimately linked to the geometry of the constraint distribution. For -Chaplygin systems, this yields a stochastic criterion for the existence of a smooth preserved measure. As an application of our results we consider the motion planning problem for the noisy two-wheeled robot and the noisy snakeboard.
This paper addresses the problem of global finite-time stabilization by dynamic state feedback for a class of stochastic nonlinear systems. Firstly, we show a dynamic state transformation, under which the original system is transformed into a new system. Then, a state feedback controller with a dynamic gain is designed for the new system. It is shown that global finite-time stabilization in probability for a class of stochastic nonlinear system under linear growth condition can be guaranteed by...
An adaptive output regulation design method is proposed for a class of output feedback systems with nonlinear exosystem and unknown parameters. A new nonlinear internal model approach is developed in the present study that successfully converts the global robust output regulation problem into a robust adaptive stabilization problem for the augmented system. Moreover, an output feedback controller is achieved based on a type of state filter which is designed for the transformed augmented system....
The Goodman-Kruskal measure, which is a well-known measure of dependence for contingency tables, is generalized to the case when the variables of interest are categorized by linguistic terms rather than crisp sets. In addition, to test the hypothesis of independence in such contingency tables, a novel method of decision making is developed based on a concept of fuzzy -value. The applicability of the proposed approach is explained using a numerical example.
The current powerful graphics cards, providing stunning real-time visual effects for computer-based entertainment, have to accommodate powerful hardware components that are able to deliver the photo-realistic simulation to the end-user. Given the vast computing power of the graphics hardware, its producers very often offer a programming interface that makes it possible to use the computational resources of the graphics processors (GPU) to more general purposes. This step gave birth to the so-called...
The Probability Density Function (PDF) is a key concept in statistics. Constructing the most adequate PDF from the observed data is still an important and interesting scientific problem, especially for large datasets. PDFs are often estimated using nonparametric data-driven methods. One of the most popular nonparametric method is the Kernel Density Estimator (KDE). However, a very serious drawback of using KDEs is the large number of calculations required to compute them, especially to find the...
In this note we focus attention on characterizations of policies maximizing growth rate of expected utility, along with average of the associated certainty equivalent, in risk-sensitive Markov decision chains with finite state and action spaces. In contrast to the existing literature the problem is handled by methods of stochastic dynamic programming on condition that the transition probabilities are replaced by general nonnegative matrices. Using the block-triangular decomposition of a collection...