On 2-ranks of Steiner triple systems.
In this paper we present 35 new extremal binary self-dual doubly-even codes of length 88. Their inequivalence is established by invariants. Moreover, a construction of a binary self-dual [88, 44, 16] code, having an automorphism of order 21, is given.*This work was partly supported by the Norwegian Government Scholarship.
It is shown that the maximum size of a set of vectors of a -dimensional vector space over , with the property that every subset of size is a basis, is at most , if , and at most , if , where and is prime. Moreover, for , the sets of maximum size are classified, generalising Beniamino Segre’s “arc is a conic” theorem. These results have various implications. One such implication is that a matrix, with and entries from , has columns which are linearly dependent. Another is...
Partially supported by the Technical University of Gabrovo under Grant C-801/2008One of the main problems in the theory of superimposed codes is to find the minimum length N for which an (N, T,w, r) superimposed code exists for given values of T , w and r. Let N(T,w, r) be the minimum length N for which an (N, T,w, r) superimposed code exists. The (N, T,w, r) superimposed code is called optimal when N = N(T,w, r). The values of N(T, 1, 2) are known for T ≤ 12 and the values of N(T, 1, 3) are known for...
We consider the problem of constructing dense lattices in with a given non trivial automorphisms group. We exhibit a family of such lattices of density at least , which matches, up to a multiplicative constant, the best known density of a lattice packing. For an infinite sequence of dimensions , we exhibit a finite set of lattices that come with an automorphisms group of size , and a constant proportion of which achieves the aforementioned lower bound on the largest packing density. The algorithmic...
We are extending to linear recurrent codes, i.e., to time-varying convolutional codes, most of the classic structural properties of fixed convolutional codes. We are also proposing a new connection between fixed convolutional codes and linear block codes. These results are obtained thanks to a module-theoretic framework which has been previously developed for linear control.
We are extending to linear recurrent codes, i.e., to time-varying convolutional codes, most of the classic structural properties of fixed convolutional codes. We are also proposing a new connection between fixed convolutional codes and linear block codes. These results are obtained thanks to a module-theoretic framework which has been previously developed for linear control.