Page 1 Next

Displaying 1 – 20 of 91

Showing per page

An extended problem to Bertrand's paradox

Mostafa K. Ardakani, Shaun S. Wulff (2014)

Discussiones Mathematicae Probability and Statistics

Bertrand's paradox is a longstanding problem within the classical interpretation of probability theory. The solutions 1/2, 1/3, and 1/4 were proposed using three different approaches to model the problem. In this article, an extended problem, of which Bertrand's paradox is a special case, is proposed and solved. For the special case, it is shown that the corresponding solution is 1/3. Moreover, the reasons of inconsistency are discussed and a proper modeling approach is determined by careful examination...

Další pozoruhodné vlastnosti kruhové inverze

Stanislav Novák (2017)

Učitel matematiky

Následující příspěvek si klade za cíl rozšířit článek "Pozoruhodné vlastnosti kruhové inverze" a doplnit některé další zajímavé vlastnosti tohoto zobrazení a souvislosti se školskou geometrií.

Dva čtverce v rovnostranném trojúhelníku

Emil Calda (2014)

Učitel matematiky

The author presents a solution to a geometric problem concerning two squares inscribed into an equilateral triangle. It deals with finding such a position of the two squares for which the sum of areas is the smallest.

GeoGebra jako nástroj objevování a dokazování

Roman Hašek (2014)

Učitel matematiky

Using examples from elementary mathematics, the article presents some possibilities of using GeoGebra as a tool of active discovery of the mathematical basis of problems. The solving procedures are described by individual steps so that the reader can try them him/herself. The problems were chosen so that different solving strategies can be used in GeoGebra: analytic, synthetic, algebraic.

Jak se také dá poznat pravoúhlý trojúhelník

Emil Calda (2013)

Učitel matematiky

The author presents a proof that when given triangle A B C , point P S is a foot of a perpendicular from C on A B , and S is the middle of A B , then if angle A C S equals angle P C B , then angle B C A is a right one.

Je matematika věda nebo řemeslo?

František Kuřina (2017)

Učitel matematiky

The article deals with some possibilities of how to teach mathematics through practical activities. The matematics in this conception is not a theoretical field. It is the area of the creation of mathematics by students themselves. Some examples are given.

Currently displaying 1 – 20 of 91

Page 1 Next