Page 1

Displaying 1 – 9 of 9

Showing per page

A short note on multivariate dependence modeling

Vladislav Bína, Radim Jiroušek (2013)

Kybernetika

As said by Mareš and Mesiar, necessity of aggregation of complex real inputs appears almost in any field dealing with observed (measured) real quantities (see the citation below). For aggregation of probability distributions Sklar designed his copulas as early as in 1959. But surprisingly, since that time only a very few literature have appeared dealing with possibility to aggregate several different pairwise dependencies into one multivariate copula. In the present paper this problem is tackled...

Degradation in probability logic: When more information leads to less precise conclusions

Christian Wallmann, Gernot D. Kleiter (2014)

Kybernetika

Probability logic studies the properties resulting from the probabilistic interpretation of logical argument forms. Typical examples are probabilistic Modus Ponens and Modus Tollens. Argument forms with two premises usually lead from precise probabilities of the premises to imprecise or interval probabilities of the conclusion. In the contribution, we study generalized inference forms having three or more premises. Recently, Gilio has shown that these generalized forms “degrade” – more premises...

On computations with causal compositional models

Vladislav Bína, Radim Jiroušek (2015)

Kybernetika

The knowledge of causal relations provides a possibility to perform predictions and helps to decide about the most reasonable actions aiming at the desired objectives. Although the causal reasoning appears to be natural for the human thinking, most of the traditional statistical methods fail to address this issue. One of the well-known methodologies correctly representing the relations of cause and effect is Pearl's causality approach. The paper brings an alternative, purely algebraic methodology...

Currently displaying 1 – 9 of 9

Page 1