Displaying 701 – 720 of 729

Showing per page

Optimal matrices of partitions and an application to Souslin trees

Gido Scharfenberger-Fabian (2010)

Fundamenta Mathematicae

The basic result of this note is a statement about the existence of families of partitions of the set of natural numbers with some useful properties, the n-optimal matrices of partitions. We use this to improve a decomposition result for strongly homogeneous Souslin trees. The latter is in turn applied to separate strong notions of rigidity of Souslin trees, thereby answering a considerable portion of a question of Fuchs and Hamkins.

Order with successors is not interprétable in RCF

S. Świerczkowski (1993)

Fundamenta Mathematicae

Using the monotonicity theorem of L. van den Dries for RCF-definable real functions, and a further result of that author about RCF-definable equivalence relations on ℝ, we show that the theory of order with successors is not interpretable in the theory RCF. This confirms a conjecture by J. Mycielski, P. Pudlák and A. Stern.

Ordered fields and the ultrafilter theorem

R. Berr, Françoise Delon, J. Schmid (1999)

Fundamenta Mathematicae

We prove that on the basis of ZF the ultrafilter theorem and the theorem of Artin-Schreier are equivalent. The latter says that every formally real field admits a total order.

Ordered prime spectra of bounded D R l -monoids

Jiří Rachůnek (2000)

Mathematica Bohemica

Ordered prime spectra of Boolean products of bounded D R l -monoids are described by means of their decompositions to the prime spectra of the components.

Ordered Rings and Fields

Christoph Schwarzweller (2017)

Formalized Mathematics

We introduce ordered rings and fields following Artin-Schreier’s approach using positive cones. We show that such orderings coincide with total order relations and give examples of ordered (and non ordered) rings and fields. In particular we show that polynomial rings can be ordered in (at least) two different ways [8, 5, 4, 9]. This is the continuation of the development of algebraic hierarchy in Mizar [2, 3].

Ordinal remainders of classical ψ-spaces

Alan Dow, Jerry E. Vaughan (2012)

Fundamenta Mathematicae

Let ω denote the set of natural numbers. We prove: for every mod-finite ascending chain T α : α < λ of infinite subsets of ω, there exists [ ω ] ω , an infinite maximal almost disjoint family (MADF) of infinite subsets of the natural numbers, such that the Stone-Čech remainder βψ∖ψ of the associated ψ-space, ψ = ψ(ω,ℳ ), is homeomorphic to λ + 1 with the order topology. We also prove that for every λ < ⁺, where is the tower number, there exists a mod-finite ascending chain T α : α < λ , hence a ψ-space with Stone-Čech remainder...

Ordinal ultrafilters versus P-hierarchy

Andrzej Starosolski (2014)

Open Mathematics

An earlier paper [Starosolski A., P-hierarchy on βω, J. Symbolic Logic, 2008, 73(4), 1202–1214] investigated the relations between ordinal ultrafilters and the so-called P-hierarchy. The present paper focuses on the aspects of characterization of classes of ultrafilters of finite index, existence, generic existence and the Rudin-Keisler-order.

Ordinary differential equations and descriptive set theory: uniqueness and globality of solutions of Cauchy problems in one dimension

Alessandro Andretta, Alberto Marcone (1997)

Fundamenta Mathematicae

We study some natural sets arising in the theory of ordinary differential equations in one variable from the point of view of descriptive set theory and in particular classify them within the Borel hierarchy. We prove that the set of Cauchy problems for ordinary differential equations which have a unique solution is 2 0 -complete and that the set of Cauchy problems which locally have a unique solution is 3 0 -complete. We prove that the set of Cauchy problems which have a global solution is 0 4 -complete...

Currently displaying 701 – 720 of 729