The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 21 –
40 of
110
We show that if ℱ is a hereditary family of subsets of satisfying certain definable conditions, then the reals are precisely the reals α such that . This generalizes the results for measure and category. Appropriate generalization to the higher levels of the projective hierarchy is obtained under Projective Determinacy. Application of this result to the -encodable reals is also shown.
We provide an elementary proof of the fixpoint alternation hierarchy
in arithmetic, which in turn allows us to simplify the proof of the
modal mu-calculus alternation hierarchy. We further show that the
alternation hierarchy on the binary tree is strict, resolving a
problem of Niwiński.
A modified version of the classical µ-operator as well as the
first value operator and the operator of inverting unary
functions, applied in combination with the composition of
functions and starting from the primitive recursive functions,
generate all arithmetically representable functions. Moreover, the
nesting levels of these operators are closely related to the
stratification of the arithmetical hierarchy. The same is shown
for some further function operators known from computability and complexity
theory....
The first-value operator assigns to any sequence of partial functions of the same type a new such function. Its domain is the union of the domains of the sequence functions, and its value at any point is just the value of the first function in the sequence which is defined at that point. In this paper, the first-value operator is applied to establish hierarchies of classes of functions under various settings. For effective sequences of computable discrete functions, we obtain a hierarchy connected...
The first-value operator assigns to any sequence of partial functions of the same type a new such function. Its domain is the union of the domains of the sequence functions, and its value at
any point is just the value of the first function in the sequence which is defined at that point.
In this paper, the first-value operator is applied to establish hierarchies of classes of functions under various settings. For effective sequences of computable discrete functions, we obtain a
hierarchy connected...
A real number x is called Δ20 if its binary expansion corresponds to a Δ20-set of natural numbers. Such reals are just the limits of computable sequences of rational numbers and hence also called computably approximable. Depending on how fast the sequences converge, Δ20-reals have different levels of effectiveness. This leads to various hierarchies of Δ20 reals. In this survey paper we summarize several recent developments related to such kind of hierarchies shown by the author and his collaborators.
...
Currently displaying 21 –
40 of
110