A generalization of generalized Paley graphs and new lower bounds for .
A category generalizing Jaeger-Nomura algebra associated to a spin model is given. It is used to prove some equivalence among the four conditions by Jaeger-Nomura for spin models of index 2.
In this paper we generalize the Pascal triangle and examine the connections among the generalized triangles and powering integers respectively polynomials. We emphasize the relationship between the new triangles and the Pascal pyramids, moreover we present connections with the binomial and multinomial theorems.