The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 201 – 220 of 1227

Showing per page

A Finite Characterization and Recognition of Intersection Graphs of Hypergraphs with Rank at Most 3 and Multiplicity at Most 2 in the Class of Threshold Graphs

Yury Metelsky, Kseniya Schemeleva, Frank Werner (2017)

Discussiones Mathematicae Graph Theory

We characterize the class [...] L32 L 3 2 of intersection graphs of hypergraphs with rank at most 3 and multiplicity at most 2 by means of a finite list of forbidden induced subgraphs in the class of threshold graphs. We also give an O(n)-time algorithm for the recognition of graphs from [...] L32 L 3 2 in the class of threshold graphs, where n is the number of vertices of a tested graph.

A formula for all minors of the adjacency matrix and an application

R. B. Bapat, A. K. Lal, S. Pati (2014)

Special Matrices

We supply a combinatorial description of any minor of the adjacency matrix of a graph. This description is then used to give a formula for the determinant and inverse of the adjacency matrix, A(G), of a graph G, whenever A(G) is invertible, where G is formed by replacing the edges of a tree by path bundles.

A Gallai-type equality for the total domination number of a graph

Sanming Zhou (2004)

Discussiones Mathematicae Graph Theory

We prove the following Gallai-type equality γₜ(G) + εₜ(G) = p for any graph G with no isolated vertex, where p is the number of vertices of G, γₜ(G) is the total domination number of G, and εₜ(G) is the maximum integer s such that there exists a spanning forest F with s the number of pendant edges of F minus the number of star components of F.

A game of composing binary relations

P. GoralČík, Z. Hedrlín, V. Koubek, J. Ryšunková (1982)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

A general upper bound in extremal theory of sequences

Martin Klazar (1992)

Commentationes Mathematicae Universitatis Carolinae

We investigate the extremal function f ( u , n ) which, for a given finite sequence u over k symbols, is defined as the maximum length m of a sequence v = a 1 a 2 . . . a m of integers such that 1) 1 a i n , 2) a i = a j , i j implies | i - j | k and 3) v contains no subsequence of the type u . We prove that f ( u , n ) is very near to be linear in n for any fixed u of length greater than 4, namely that f ( u , n ) = O ( n 2 O ( α ( n ) | u | - 4 ) ) . Here | u | is the length of u and α ( n ) is the inverse to the Ackermann function and goes to infinity very slowly. This result extends the estimates in [S] and [ASS] which...

Currently displaying 201 – 220 of 1227