Displaying 261 – 280 of 298

Showing per page

Graphs without induced P₅ and C₅

Gabor Bacsó, Zsolt Tuza (2004)

Discussiones Mathematicae Graph Theory

Zverovich [Discuss. Math. Graph Theory 23 (2003), 159-162.] has proved that the domination number and connected domination number are equal on all connected graphs without induced P₅ and C₅. Here we show (with an independent proof) that the following stronger result is also valid: Every P₅-free and C₅-free connected graph contains a minimum-size dominating set that induces a complete subgraph.

Green functions on self-similar graphs and bounds for the spectrum of the laplacian

Bernhard Krön (2002)

Annales de l’institut Fourier

Combining the study of the simple random walk on graphs, generating functions (especially Green functions), complex dynamics and general complex analysis we introduce a new method for spectral analysis on self-similar graphs.First, for a rather general, axiomatically defined class of self-similar graphs a graph theoretic analogue to the Banach fixed point theorem is proved. The subsequent results hold for a subclass consisting of “symmetrically” self-similar graphs which however is still more general then...

Gromov hyperbolic cubic graphs

Domingo Pestana, José Rodríguez, José Sigarreta, María Villeta (2012)

Open Mathematics

If X is a geodesic metric space and x 1; x 2; x 3 ∈ X, a geodesic triangle T = {x 1; x 2; x 3} is the union of the three geodesics [x 1 x 2], [x 2 x 3] and [x 3 x 1] in X. The space X is δ-hyperbolic (in the Gromov sense) if any side of T is contained in a δ-neighborhood of the union of the two other sides, for every geodesic triangle T in X. We denote by δ(X) the sharp hyperbolicity constant of X, i.e., δ(X) = inf {δ ≥ 0: X is δ-hyperbolic}. We obtain information about the hyperbolicity constant...

Gromov hyperbolicity of planar graphs

Alicia Cantón, Ana Granados, Domingo Pestana, José Rodríguez (2013)

Open Mathematics

We prove that under appropriate assumptions adding or removing an infinite amount of edges to a given planar graph preserves its non-hyperbolicity, a result which is shown to be false in general. In particular, we make a conjecture that every tessellation graph of ℝ2 with convex tiles is non-hyperbolic; it is shown that in order to prove this conjecture it suffices to consider tessellation graphs of ℝ2 such that every tile is a triangle and a partial answer to this question is given. A weaker version...

Currently displaying 261 – 280 of 298