Displaying 301 – 320 of 374

Showing per page

Prime ideals in the lattice of additive induced-hereditary graph properties

Amelie J. Berger, Peter Mihók (2003)

Discussiones Mathematicae Graph Theory

An additive induced-hereditary property of graphs is any class of finite simple graphs which is closed under isomorphisms, disjoint unions and induced subgraphs. The set of all additive induced-hereditary properties of graphs, partially ordered by set inclusion, forms a completely distributive lattice. We introduce the notion of the join-decomposability number of a property and then we prove that the prime ideals of the lattice of all additive induced-hereditary properties are divided into two groups,...

Probability measures corresponding to Aval numbers

Wojciech Młotkowski (2012)

Colloquium Mathematicae

We describe the class of probability measures whose moments are given in terms of the Aval numbers. They are expressed as the multiplicative free convolution of measures corresponding to the ballot numbers ( m - k ) / ( m + k ) m + k m .

Probability that an element of a finite group has a square root

M. S. Lucido, M. R. Pournaki (2008)

Colloquium Mathematicae

Let G be a finite group of even order. We give some bounds for the probability p(G) that a randomly chosen element in G has a square root. In particular, we prove that p(G) ≤ 1 - ⌊√|G|⌋/|G|. Moreover, we show that if the Sylow 2-subgroup of G is not a proper normal elementary abelian subgroup of G, then p(G) ≤ 1 - 1/√|G|. Both of these bounds are best possible upper bounds for p(G), depending only on the order of G.

Currently displaying 301 – 320 of 374