Displaying 321 – 340 of 374

Showing per page

Problems remaining NP-complete for sparse or dense graphs

Ingo Schiermeyer (1995)

Discussiones Mathematicae Graph Theory

For each fixed pair α,c > 0 let INDEPENDENT SET ( m c n α ) and INDEPENDENT SET ( m ( ) - c n α ) be the problem INDEPENDENT SET restricted to graphs on n vertices with m c n α or m ( ) - c n α edges, respectively. Analogously, HAMILTONIAN CIRCUIT ( m n + c n α ) and HAMILTONIAN PATH ( m n + c n α ) are the problems HAMILTONIAN CIRCUIT and HAMILTONIAN PATH restricted to graphs with m n + c n α edges. For each ϵ > 0 let HAMILTONIAN CIRCUIT (m ≥ (1 - ϵ)(ⁿ₂)) and HAMILTONIAN PATH (m ≥ (1 - ϵ)(ⁿ₂)) be the problems HAMILTONIAN CIRCUIT and HAMILTONIAN PATH restricted...

Product rosy labeling of graphs

Dalibor Fronček (2008)

Discussiones Mathematicae Graph Theory

In this paper we describe a natural extension of the well-known ρ-labeling of graphs (also known as rosy labeling). The labeling, called product rosy labeling, labels vertices with elements of products of additive groups. We illustrate the usefulness of this labeling by presenting a recursive construction of infinite families of trees decomposing complete graphs.

Products Of Digraphs And Their Competition Graphs

Martin Sonntag, Hanns-Martin Teichert (2016)

Discussiones Mathematicae Graph Theory

If D = (V, A) is a digraph, its competition graph (with loops) CGl(D) has the vertex set V and {u, v} ⊆ V is an edge of CGl(D) if and only if there is a vertex w ∈ V such that (u, w), (v, w) ∈ A. In CGl(D), loops {v} are allowed only if v is the only predecessor of a certain vertex w ∈ V. For several products D1 ⚬ D2 of digraphs D1 and D2, we investigate the relations between the competition graphs of the factors D1, D2 and the competition graph of their product D1 ⚬ D2.

Products of Geodesic Graphs and the Geodetic Number of Products

Jake A. Soloff, Rommy A. Márquez, Louis M. Friedler (2015)

Discussiones Mathematicae Graph Theory

Given a connected graph and a vertex x ∈ V (G), the geodesic graph Px(G) has the same vertex set as G with edges uv iff either v is on an x − u geodesic path or u is on an x − v geodesic path. A characterization is given of those graphs all of whose geodesic graphs are complete bipartite. It is also shown that the geodetic number of the Cartesian product of Km,n with itself, where m, n ≥ 4, is equal to the minimum of m, n and eight.

Currently displaying 321 – 340 of 374