The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 321 –
340 of
8549
In this work, we get a combinatorial characterization for maximal generalized outerplanar graphs (mgo graphs). This result yields a recursive algorithm testing whether a graph is a mgo graph or not.
ACM Computing Classification System (1998): G.2.2.We propose an algorithm that computes the length of a longest
path in a cactus graph. Our algorithm can easily be modified to output a
longest path as well or to solve the problem on cacti with edge or vertex
weights. The algorithm works on rooted cacti and assigns to each vertex
a two-number label, the first number being the desired parameter of the
subcactus rooted at that vertex. The algorithm applies the divide-and-conquer approach and computes...
For a connected graph and a set with at least two vertices, an -Steiner tree is a subgraph of that is a tree with . If the degree of each vertex of in is equal to 1, then is called a pendant -Steiner tree. Two -Steiner trees are internally disjoint if they share no vertices other than and have no edges in common. For and , the pendant tree-connectivity is the maximum number of internally disjoint pendant -Steiner trees in , and for , the -pendant tree-connectivity ...
Let ir(G) and γ(G) be the irredundance number and domination number of a graph G, respectively. The number of vertices and leaves of a graph G are denoted by n(G) and n₁(G). If T is a tree, then Lemańska [4] presented in 2004 the sharp lower bound
γ(T) ≥ (n(T) + 2 - n₁(T))/3.
In this paper we prove
ir(T) ≥ (n(T) + 2 - n₁(T))/3. for an arbitrary tree T. Since γ(T) ≥ ir(T) is always valid, this inequality is an extension and improvement of Lemańska's result.
...
Let G = (V, E) be a simple graph of order n and i be an integer with i ≥ 1. The set X i ⊆ V(G) is called an i-packing if each two distinct vertices in X i are more than i apart. A packing colouring of G is a partition X = {X 1, X 2, …, X k} of V(G) such that each colour class X i is an i-packing. The minimum order k of a packing colouring is called the packing chromatic number of G, denoted by χρ(G). In this paper we show, using a theoretical proof, that if q = 4t, for some integer t ≥ 3, then 9...
For a connected and non-complete graph, a new lower bound on its independence number is proved. It is shown that this bound is realizable by the well known efficient algorithm MIN.
Currently displaying 321 –
340 of
8549