The maximum clique and the signless Laplacian eigenvalues
Lower and upper bounds are obtained for the clique number and the independence number , in terms of the eigenvalues of the signless Laplacian matrix of a graph .
Lower and upper bounds are obtained for the clique number and the independence number , in terms of the eigenvalues of the signless Laplacian matrix of a graph .
In this paper we determine the maximum genus of a graph by using the matching number of the intersection graph of a basis of its cycle space. Our result is a common generalization of a theorem of Glukhov and a theorem of Nebeský .
The maximum multiplicity of an eigenvalue in a matrix whose graph is a tree, M1, was understood fully (froma combinatorial perspective) by C.R. Johnson, A. Leal-Duarte (Linear Algebra and Multilinear Algebra 46 (1999) 139-144). Among the possible multiplicity lists for the eigenvalues of Hermitian matrices whose graph is a tree, we focus upon M2, the maximum value of the sum of the two largest multiplicities when the largest multiplicity is M1. Upper and lower bounds are given for M2. Using a combinatorial...
In a connected graph G, the status of a vertex is the sum of the distances of that vertex to each of the other vertices in G. The subgraph induced by the vertices of minimum (maximum) status in G is called the median (anti-median) of G. The median problem of graphs is closely related to the optimization problems involving the placement of network servers, the core of the entire networks. Bipartite graphs play a significant role in designing very large interconnection networks. In this paper, we...
In this paper we observe that the minimal signless Laplacian spectral radius is obtained uniquely at the kite graph PKn−ω,ω among all connected graphs with n vertices and clique number ω. In addition, we show that the spectral radius μ of PKm,ω (m ≥ 1) satisfies [...] More precisely, for m > 1, μ satisfies the equation [...] where [...] and [...] . At last the spectral radius μ(PK∞,ω) of the infinite graph PK∞,ω is also discussed.