The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 381 –
400 of
1227
We first show that if a 2-connected graph G of order n is such that for each two vertices u and v such that δ = d(u) and d(v) < n/2 the edge uv belongs to E(G), then G is hamiltonian. Next, by using this result, we prove that a graph G satysfying the above condition is either pancyclic or isomorphic to .
In this paper we address the two-dimensional knapsack problem with unloading constraints: we have a bin B, and a list L of n rectangular items, each item with a class value in {1,...,C}. The problem is to pack a subset of L into B, maximizing the total profit of packed items, where the packing must satisfy the unloading constraint: while removing one item a, items with higher class values can not block a. We present a (4 + ϵ)-approximation algorithm when the bin is a square. We also present (3 + ϵ)-approximation...
The problem of finding minimal vertex number of graphs with a given automorphism group is addressed in this article for the case of cyclic groups. This problem was considered earlier by other authors. We give a construction of an undirected graph having vertices and automorphism group cyclic of order , . As a special case we get graphs with vertices and cyclic automorphism groups of order . It can revive interest in related problems.
We prove that every vertex v of a tournament T belongs to at least
arc-disjoint cycles, where δ⁺(T) (or δ¯(T)) is the minimum out-degree (resp. minimum in-degree) of T, and (or ) is the out-degree (resp. in-degree) of v.
Si precisano alcuni risultati del lavoro accennato nel titolo.
Barnette conjectured that each planar, bipartite, cubic, and 3-connected graph is hamiltonian. We prove that this conjecture is equivalent to the statement that there is a constant c > 0 such that each graph G of this class contains a path on at least c|V (G)| vertices.
Let G be a simple graph of order n and size e(G). It is well known that if e(G) ≤ n-2, then there is an edge-disjoint placement of two copies of G into Kₙ. We prove that with the same condition on size of G we have actually (with few exceptions) a careful packing of G, that is an edge-disjoint placement of two copies of G into Kₙ∖Cₙ.
Currently displaying 381 –
400 of
1227