The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 381 – 400 of 1227

Showing per page

A note on a new condition implying pancyclism

Evelyne Flandrin, Hao Li, Antoni Marczyk, Mariusz Woźniak (2001)

Discussiones Mathematicae Graph Theory

We first show that if a 2-connected graph G of order n is such that for each two vertices u and v such that δ = d(u) and d(v) < n/2 the edge uv belongs to E(G), then G is hamiltonian. Next, by using this result, we prove that a graph G satysfying the above condition is either pancyclic or isomorphic to K n / 2 , n / 2 .

A note on a two dimensional knapsack problem with unloading constraints

Jefferson Luiz Moisés da Silveira, Eduardo Candido Xavier, Flávio Keidi Miyazawa (2013)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

In this paper we address the two-dimensional knapsack problem with unloading constraints: we have a bin B, and a list L of n rectangular items, each item with a class value in {1,...,C}. The problem is to pack a subset of L into B, maximizing the total profit of packed items, where the packing must satisfy the unloading constraint: while removing one item a, items with higher class values can not block a. We present a (4 + ϵ)-approximation algorithm when the bin is a square. We also present (3 + ϵ)-approximation...

A note on another construction of graphs with 4 n + 6 vertices and cyclic automorphism group of order 4 n

Peteris Daugulis (2017)

Archivum Mathematicum

The problem of finding minimal vertex number of graphs with a given automorphism group is addressed in this article for the case of cyclic groups. This problem was considered earlier by other authors. We give a construction of an undirected graph having 4 n + 6 vertices and automorphism group cyclic of order 4 n , n 1 . As a special case we get graphs with 2 k + 6 vertices and cyclic automorphism groups of order 2 k . It can revive interest in related problems.

A note on arc-disjoint cycles in tournaments

Jan Florek (2014)

Colloquium Mathematicae

We prove that every vertex v of a tournament T belongs to at least m a x m i n δ ( T ) , 2 δ ( T ) - d T ( v ) + 1 , m i n δ ¯ ( T ) , 2 δ ¯ ( T ) - d ¯ T ( v ) + 1 arc-disjoint cycles, where δ⁺(T) (or δ¯(T)) is the minimum out-degree (resp. minimum in-degree) of T, and d T ( v ) (or d ¯ T ( v ) ) is the out-degree (resp. in-degree) of v.

A Note on Barnette’s Conjecture

Jochen Harant (2013)

Discussiones Mathematicae Graph Theory

Barnette conjectured that each planar, bipartite, cubic, and 3-connected graph is hamiltonian. We prove that this conjecture is equivalent to the statement that there is a constant c > 0 such that each graph G of this class contains a path on at least c|V (G)| vertices.

A note on careful packing of a graph

M. Woźniak (1995)

Discussiones Mathematicae Graph Theory

Let G be a simple graph of order n and size e(G). It is well known that if e(G) ≤ n-2, then there is an edge-disjoint placement of two copies of G into Kₙ. We prove that with the same condition on size of G we have actually (with few exceptions) a careful packing of G, that is an edge-disjoint placement of two copies of G into Kₙ∖Cₙ.

Currently displaying 381 – 400 of 1227