The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 401 – 420 of 662

Showing per page

Spanning caterpillars with bounded diameter

Ralph Faudree, Ronald Gould, Michael Jacobson, Linda Lesniak (1995)

Discussiones Mathematicae Graph Theory

A caterpillar is a tree with the property that the vertices of degree at least 2 induce a path. We show that for every graph G of order n, either G or G̅ has a spanning caterpillar of diameter at most 2 log n. Furthermore, we show that if G is a graph of diameter 2 (diameter 3), then G contains a spanning caterpillar of diameter at most c n 3 / 4 (at most n).

Spanning tree congestion of rook's graphs

Kyohei Kozawa, Yota Otachi (2011)

Discussiones Mathematicae Graph Theory

Let G be a connected graph and T be a spanning tree of G. For e ∈ E(T), the congestion of e is the number of edges in G joining the two components of T - e. The congestion of T is the maximum congestion over all edges in T. The spanning tree congestion of G is the minimum congestion over all its spanning trees. In this paper, we determine the spanning tree congestion of the rook's graph Kₘ ☐ Kₙ for any m and n.

Spanning trees of bounded degree.

Czygrinow, Andrzej, Fan, Genghua, Hurlbert, Glenn, Kierstead, H.A., Trotter, William T. (2001)

The Electronic Journal of Combinatorics [electronic only]

Spanning trees whose reducible stems have a few branch vertices

Pham Hoang Ha, Dang Dinh Hanh, Nguyen Thanh Loan, Ngoc Diep Pham (2021)

Czechoslovak Mathematical Journal

Let T be a tree. Then a vertex of T with degree one is a leaf of T and a vertex of degree at least three is a branch vertex of T . The set of leaves of T is denoted by L ( T ) and the set of branch vertices of T is denoted by B ( T ) . For two distinct vertices u , v of T , let P T [ u , v ] denote the unique path in T connecting u and v . Let T be a tree with B ( T ) . For each leaf x of T , let y x denote the nearest branch vertex to x . We delete V ( P T [ x , y x ] ) { y x } from T for all x L ( T ) . The resulting subtree of T is called the reducible stem of T and denoted...

Spanning Trees whose Stems have a Bounded Number of Branch Vertices

Zheng Yan (2016)

Discussiones Mathematicae Graph Theory

Let T be a tree, a vertex of degree one and a vertex of degree at least three is called a leaf and a branch vertex, respectively. The set of leaves of T is denoted by Leaf(T). The subtree T − Leaf(T) of T is called the stem of T and denoted by Stem(T). In this paper, we give two sufficient conditions for a connected graph to have a spanning tree whose stem has a bounded number of branch vertices, and these conditions are best possible.

Spanning trees with many or few colors in edge-colored graphs

Hajo Broersma, Xueliang Li (1997)

Discussiones Mathematicae Graph Theory

Given a graph G = (V,E) and a (not necessarily proper) edge-coloring of G, we consider the complexity of finding a spanning tree of G with as many different colors as possible, and of finding one with as few different colors as possible. We show that the first problem is equivalent to finding a common independent set of maximum cardinality in two matroids, implying that there is a polynomial algorithm. We use the minimum dominating set problem to show that the second problem is NP-hard.

Special m-hyperidentities in biregular leftmost graph varieties of type (2,0)

Apinant Anantpinitwatna, Tiang Poomsa-ard (2009)

Discussiones Mathematicae - General Algebra and Applications

Graph algebras establish a connection between directed graphs without multiple edges and special universal algebras of type (2,0). We say that a graph G satisfies a term equation s ≈ t if the corresponding graph algebra A ( G ) ̲ satisfies s ≈ t. A class of graph algebras V is called a graph variety if V = M o d g Σ where Σ is a subset of T(X) × T(X). A graph variety V ' = M o d g Σ ' is called a biregular leftmost graph variety if Σ’ is a set of biregular leftmost term equations. A term equation s ≈ t is called an identity in a variety...

Currently displaying 401 – 420 of 662