The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 461 – 480 of 1227

Showing per page

A note on packing of two copies of a hypergraph

Monika Pilśniak, Mariusz Woźniak (2007)

Discussiones Mathematicae Graph Theory

A 2-packing of a hypergraph 𝓗 is a permutation σ on V(𝓗) such that if an edge e belongs to 𝓔(𝓗), then σ (e) does not belong to 𝓔(𝓗). We prove that a hypergraph which does not contain neither empty edge ∅ nor complete edge V(𝓗) and has at most 1/2n edges is 2-packable. A 1-uniform hypergraph of order n with more than 1/2n edges shows that this result cannot be improved by increasing the size of 𝓗.

A Note on Path Domination

Liliana Alcón (2016)

Discussiones Mathematicae Graph Theory

We study domination between different types of walks connecting two non-adjacent vertices u and v of a graph (shortest paths, induced paths, paths, tolled walks). We succeeded in characterizing those graphs in which every uv-walk of one particular kind dominates every uv-walk of other specific kind. We thereby obtained new characterizations of standard graph classes like chordal, interval and superfragile graphs.

A note on perfect matchings in uniform hypergraphs with large minimum collective degree

Vojtěch Rödl, Andrzej Ruciński, Mathias Schacht, Endre Szemerédi (2008)

Commentationes Mathematicae Universitatis Carolinae

For an integer k 2 and a k -uniform hypergraph H , let δ k - 1 ( H ) be the largest integer d such that every ( k - 1 ) -element set of vertices of H belongs to at least d edges of H . Further, let t ( k , n ) be the smallest integer t such that every k -uniform hypergraph on n vertices and with δ k - 1 ( H ) t contains a perfect matching. The parameter t ( k , n ) has been completely determined for all k and large n divisible by k by Rödl, Ruci’nski, and Szemerédi in [Perfect matchings in large uniform hypergraphs with large minimum collective degree, submitted]....

A note on periodicity of the 2-distance operator

Bohdan Zelinka (2000)

Discussiones Mathematicae Graph Theory

The paper solves one problem by E. Prisner concerning the 2-distance operator T₂. This is an operator on the class C f of all finite undirected graphs. If G is a graph from C f , then T₂(G) is the graph with the same vertex set as G in which two vertices are adjacent if and only if their distance in G is 2. E. Prisner asks whether the periodicity ≥ 3 is possible for T₂. In this paper an affirmative answer is given. A result concerning the periodicity 2 is added.

A note on pm-compact bipartite graphs

Jinfeng Liu, Xiumei Wang (2014)

Discussiones Mathematicae Graph Theory

A graph is called perfect matching compact (briefly, PM-compact), if its perfect matching graph is complete. Matching-covered PM-compact bipartite graphs have been characterized. In this paper, we show that any PM-compact bipartite graph G with δ (G) ≥ 2 has an ear decomposition such that each graph in the decomposition sequence is also PM-compact, which implies that G is matching-covered

A note on q -partial difference equations and some applications to generating functions and q -integrals

Da-Wei Niu, Jian Cao (2019)

Czechoslovak Mathematical Journal

We study the condition on expanding an analytic several variables function in terms of products of the homogeneous generalized Al-Salam-Carlitz polynomials. As applications, we deduce bilinear generating functions for the homogeneous generalized Al-Salam-Carlitz polynomials. We also gain multilinear generating functions for the homogeneous generalized Al-Salam-Carlitz polynomials. Moreover, we obtain generalizations of Andrews-Askey integrals and Ramanujan q -beta integrals. At last, we derive U ( n + 1 ) ...

A note on radio antipodal colourings of paths

Riadh Khennoufa, Olivier Togni (2005)

Mathematica Bohemica

The radio antipodal number of a graph G is the smallest integer c such that there exists an assignment f V ( G ) { 1 , 2 , ... , c } satisfying | f ( u ) - f ( v ) | D - d ( u , v ) for every two distinct vertices u and v of G , where D is the diameter of G . In this note we determine the exact value of the antipodal number of the path, thus answering the conjecture given in [G. Chartrand, D. Erwin and P. Zhang, Math. Bohem. 127 (2002), 57–69]. We also show the connections between this colouring and radio labelings.

Currently displaying 461 – 480 of 1227