The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 481 –
500 of
1227
For any positive integer k and any set A of nonnegative integers, let denote the number of solutions (a₁,a₂) of the equation n = a₁ + ka₂ with a₁,a₂ ∈ A. Let k,l ≥ 2 be two distinct integers. We prove that there exists a set A ⊆ ℕ such that both and hold for all n ≥ n₀ if and only if log k/log l = a/b for some odd positive integers a,b, disproving a conjecture of Yang. We also show that for any set A ⊆ ℕ satisfying for all n ≥ n₀, we have as n → ∞.
We prove that a rank Dowling geometry of a group is partition representable if and only if is a Frobenius complement. This implies that Dowling group geometries are secret-sharing if and only if they are multilinearly representable.
A graph , with a group of automorphisms of , is said to be -transitive, for some , if is transitive on -arcs but not on -arcs. Let be a connected -transitive graph of prime valency , and the vertex stabilizer of a vertex . Suppose that is solvable. Weiss (1974) proved that . In this paper, we prove that for some positive integers and such that and .
Strongly perfect graphs were introduced by C. Berge and P. Duchet in [1]. In [4], [3] the following was studied: the problem of strong perfectness for the Cartesian product, the tensor product, the symmetrical difference of n, n ≥ 2, graphs and for the generalized Cartesian product of graphs. Co-strong perfectness was first studied by G. Ravindra andD. Basavayya [5]. In this paper we discuss strong perfectness and co-strong perfectness for the generalized composition (the lexicographic product)...
In this note we give an upper bound for λ(n), the maximum number of edges in a strongly multiplicative graph of order n, which is sharper than the upper bound obtained by Beineke and Hegde [1].
Clique family inequalities
a∑v∈W xv + (a - 1)∈v∈W, xv ≤ aδ
form an intriguing class of valid inequalities
for the stable set polytopes of all graphs.
We prove firstly
that their
Chvátal-rank is at most a, which
provides an alternative proof for the validity of clique family inequalities,
involving only standard rounding arguments.
Secondly, we strengthen the upper bound further and discuss consequences
regarding the Chvátal-rank of subclasses of claw-free graphs.
Currently displaying 481 –
500 of
1227