The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 481 –
500 of
662
A spanning subgraph F of a graph G is called a star-cycle factor of G if each component of F is a star or cycle. Let G be a graph and f : V (G) → {1, 2, 3, . . .} be a function. Let W = {v ∈ V (G) : f(v) = 1}. Under this notation, it was proved by Berge and Las Vergnas that G has a star-cycle factor F with the property that (i) if a component D of F is a star with center v, then degF (v) ≤ f(v), and (ii) if a component D of F is a cycle, then V (D) ⊆ W if and only if iso(G − S) ≤ Σx∈S f(x) for all...
We consider a planar Poisson process and its associated Voronoi map. We show that there is a proper coloring with 6 colors of the map which is a deterministic isometry-equivariant function of the Poisson process. As part of the proof we show that the 6-core of the corresponding Delaunay triangulation is empty. Generalizations, extensions and some open questions are discussed.
In this paper we show that in a tree with vertex weights the vertices with the second smallest status and those with the second smallest branch-weight are the same.
In this paper we study some distance properties of outerplanar graphs with the Hamiltonian cycle whose all bounded faces are cycles isomorphic to the cycle C4. We call this family of graphs quadrangular outerplanar graphs. We give the lower and upper bound on the double branch weight and the status for this graphs. At the end of this paper we show some relations between median and double centroid in quadrangular outerplanar graphs
Given a strongly stationary Markov chain (discrete or continuous) and a finite set of stopping rules, we show a noncombinatorial method to compute the law of stopping. Several examples are presented. The problem of embedding a graph into a larger but minimal graph under some constraints is studied. Given a connected graph, we show a noncombinatorial manner to compute the law of a first given path among a set of stopping paths.We prove the existence of a minimal Markov chain without oversized information....
Currently displaying 481 –
500 of
662