Displaying 721 – 740 of 1226

Showing per page

A sufficient condition for the existence of k-kernels in digraphs

H. Galeana-Sánchez, H.A. Rincón-Mejía (1998)

Discussiones Mathematicae Graph Theory

In this paper, we prove the following sufficient condition for the existence of k-kernels in digraphs: Let D be a digraph whose asymmetrical part is strongly conneted and such that every directed triangle has at least two symmetrical arcs. If every directed cycle γ of D with l(γ) ≢ 0 (mod k), k ≥ 2 satisfies at least one of the following properties: (a) γ has two symmetrical arcs, (b) γ has four short chords. Then D has a k-kernel. This result generalizes some previous results...

A survey of hereditary properties of graphs

Mieczysław Borowiecki, Izak Broere, Marietjie Frick, Peter Mihók, Gabriel Semanišin (1997)

Discussiones Mathematicae Graph Theory

In this paper we survey results and open problems on the structure of additive and hereditary properties of graphs. The important role of vertex partition problems, in particular the existence of uniquely partitionable graphs and reducible properties of graphs in this structure is emphasized. Many related topics, including questions on the complexity of related problems, are investigated.

A Survey of the Path Partition Conjecture

Marietjie Frick (2013)

Discussiones Mathematicae Graph Theory

The Path Partition Conjecture (PPC) states that if G is any graph and (λ1, λ2) any pair of positive integers such that G has no path with more than λ1 + λ2 vertices, then there exists a partition (V1, V2) of the vertex set of G such that Vi has no path with more than λi vertices, i = 1, 2. We present a brief history of the PPC, discuss its relation to other conjectures and survey results on the PPC that have appeared in the literature since its first formulation in 1981.

A survey on combinatorial optimization in dynamic environments∗

Nicolas Boria, Vangelis T. Paschos (2011)

RAIRO - Operations Research

This survey presents major results and issues related to the study of NPO problems in dynamic environments, that is, in settings where instances are allowed to undergo some modifications over time. In particular, the survey focuses on two complementary frameworks. The first one is the reoptimization framework, where an instance I that is already solved undergoes some local perturbation. The goal is then to make use of the information provided by the initial solution to compute a new solution. The...

A survey on combinatorial optimization in dynamic environments∗

Nicolas Boria, Vangelis T. Paschos (2011)

RAIRO - Operations Research

This survey presents major results and issues related to the study of NPO problems in dynamic environments, that is, in settings where instances are allowed to undergo some modifications over time. In particular, the survey focuses on two complementary frameworks. The first one is the reoptimization framework, where an instance I that is already solved undergoes some local perturbation. The goal is then to make use of the information provided by the initial solution to compute a new solution. The...

A symbolic shortest path algorithm for computing subgame-perfect Nash equilibria

Pedro A. Góngora, David A. Rosenblueth (2015)

International Journal of Applied Mathematics and Computer Science

Consider games where players wish to minimize the cost to reach some state. A subgame-perfect Nash equilibrium can be regarded as a collection of optimal paths on such games. Similarly, the well-known state-labeling algorithm used in model checking can be viewed as computing optimal paths on a Kripke structure, where each path has a minimum number of transitions. We exploit these similarities in a common generalization of extensive games and Kripke structures that we name “graph games”. By extending...

A tandem version of the cops and robber game played on products of graphs

Nancy E. Clarke, Richard J. Nowakowski (2005)

Discussiones Mathematicae Graph Theory

In this version of the Cops and Robber game, the cops move in tandems, or pairs, such that they are at distance at most one from each other after every move. The problem is to determine, for a given graph G, the minimum number of tandems sufficient to guarantee a win for the cops. We investigate this game on three graph products, the Cartesian, categorical and strong products.

Currently displaying 721 – 740 of 1226