Displaying 861 – 880 of 1226

Showing per page

Algorithms for Finding Unitals and Maximal Arcs in Projective Planes of Order 16

Stoichev, Stoicho (2007)

Serdica Journal of Computing

The paper has been presented at the International Conference Pioneers of Bulgarian Mathematics, Dedicated to Nikola Obreshkoff and Lubomir Tschakalo ff , Sofia, July, 2006.Two heuristic algorithms (M65 and M52) for finding respectively unitals and maximal arcs in projective planes of order 16 are described. The exact algorithms based on exhaustive search are impractical because of the combinatorial explosion (huge number of combinations to be checked). Algorithms M65 and M52 use unions of orbits...

Algorithms for recognizing bipartite-Helly and bipartite-conformal hypergraphs*, **

Marina Groshaus, Jayme Luis Szwarcfiter (2011)

RAIRO - Operations Research

A hypergraph is Helly if every family of hyperedges of it, formed by pairwise intersecting hyperedges, has a common vertex. We consider the concepts of bipartite-conformal and (colored) bipartite-Helly hypergraphs. In the same way as conformal hypergraphs and Helly hypergraphs are dual concepts, bipartite-conformal and bipartite-Helly hypergraphs are also dual. They are useful for characterizing biclique matrices and biclique graphs, that is, the...

Algorithms for recognizing bipartite-Helly and bipartite-conformal hypergraphs*, **

Marina Groshaus, Jayme Luis Szwarcfiter (2011)

RAIRO - Operations Research

A hypergraph is Helly if every family of hyperedges of it, formed by pairwise intersecting hyperedges, has a common vertex. We consider the concepts of bipartite-conformal and (colored) bipartite-Helly hypergraphs. In the same way as conformal hypergraphs and Helly hypergraphs are dual concepts, bipartite-conformal and bipartite-Helly hypergraphs are also dual. They are useful for characterizing biclique matrices and biclique graphs, that is, the...

Algorithms for the two dimensional bin packing problem with partial conflicts

Khaoula Hamdi-Dhaoui, Nacima Labadie, Alice Yalaoui (2012)

RAIRO - Operations Research

The two-dimensional bin packing problem is a well-known problem for which several exact and approximation methods were proposed. In real life applications, such as in Hazardous Material transportation, transported items may be partially incompatible, and have to be separated by a safety distance. This complication has not yet been considered in the literature. This paper introduces this extension called the two-dimensional bin packing problem with partial conflicts (2BPPC) which is a 2BP with distance...

Algorithms for the two dimensional bin packing problem with partial conflicts

Khaoula Hamdi-Dhaoui, Nacima Labadie, Alice Yalaoui (2012)

RAIRO - Operations Research

The two-dimensional bin packing problem is a well-known problem for which several exact and approximation methods were proposed. In real life applications, such as in Hazardous Material transportation, transported items may be partially incompatible, and have to be separated by a safety distance. This complication has not yet been considered in the literature. This paper introduces this extension called the two-dimensional bin packing problem with partial conflicts (2BPPC) which is a 2BP with distance...

Algunos grafos compuestos.

Miguel Angel Fiol Mora, Josep Fàbrega Canudas (1983)

Stochastica

From two graphs G1 and G2 on N1 and N2 vertices respectively, the compound graph G1[G2] on N1N2 vertices is obtained by connecting in some way N2 copies of G1.We present in this paper methods of compounding that result in families of graphs with large number of vertices for given values of the maximum degree ∆ and diameter D.

All Tight Descriptions of 3-Stars in 3-Polytopes with Girth 5

Oleg V. Borodin, Anna O. Ivanova (2017)

Discussiones Mathematicae Graph Theory

Lebesgue (1940) proved that every 3-polytope P5 of girth 5 has a path of three vertices of degree 3. Madaras (2004) refined this by showing that every P5 has a 3-vertex with two 3-neighbors and the third neighbor of degree at most 4. This description of 3-stars in P5s is tight in the sense that no its parameter can be strengthened due to the dodecahedron combined with the existence of a P5 in which every 3-vertex has a 4-neighbor. We give another tight description of 3-stars in P5s: there is a vertex...

Almost Abelian regular dessins d'enfants

Ruben A. Hidalgo (2013)

Fundamenta Mathematicae

A regular dessin d'enfant, in this paper, will be a pair (S,β), where S is a closed Riemann surface and β: S → ℂ̂ is a regular branched cover whose branch values are contained in the set {∞,0,1}. Let Aut(S,β) be the group of automorphisms of (S,β), that is, the deck group of β. If Aut(S,β) is Abelian, then it is known that (S,β) can be defined over ℚ. We prove that, if A is an Abelian group and Aut(S,β) ≅ A ⋊ ℤ₂, then (S,β) is also definable over ℚ. Moreover, if A ≅ ℤₙ, then we provide explicitly...

Currently displaying 861 – 880 of 1226