The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 81 –
100 of
189
Let be a path on vertices. In an earlier paper we have proved that each polyhedral map on any compact -manifold with Euler characteristic contains a path such that each vertex of this path has, in , degree . Moreover, this bound is attained for or , even. In this paper we prove that for each odd , this bound is the best possible on infinitely many compact -manifolds, but on infinitely many other compact -manifolds the upper bound can be lowered to .
Let be an integer. The so-called-ary search treeis a discrete time Markov chain which is very popular in theoretical computer science, modelling famous algorithms used in searching and sorting. This random process satisfies a well-known phase transition: when , the asymptotic behavior of the process is Gaussian, but for it is no longer Gaussian and a limit of a complex-valued martingale arises. In this paper, we consider the multitype branching process which is the continuous time version...
The study on limit points of eigenvalues of undirected graphs was initiated by A. J. Hoffman in 1972. Now we extend the study to digraphs. We prove: 1. Every real number is a limit point of eigenvalues of graphs. Every complex number is a limit point of eigenvalues of digraphs. 2. For a digraph , the set of limit points of eigenvalues of iterated subdivision digraphs of is the unit circle in the complex plane if and only if has a directed cycle. 3. Every limit point of eigenvalues of a set...
We find limit shapes for a family of multiplicative measures on the set of partitions, induced by exponential generating functions with expansive parameters, ak∼Ckp−1, k→∞, p>0, where C is a positive constant. The measures considered are associated with the generalized Maxwell–Boltzmann models in statistical mechanics, reversible coagulation–fragmentation processes and combinatorial structures, known as assemblies. We prove a central limit theorem for fluctuations of a properly scaled partition...
A random graph evolution based on interactions of N vertices is studied. During the evolution both the preferential attachment rule and the uniform choice of vertices are allowed. The weight of an M-clique means the number of its interactions. The asymptotic behaviour of the weight of a fixed M-clique is studied. Asymptotic theorems for the weight and the degree of a fixed vertex are also presented. Moreover, the limits of the maximal weight and the maximal degree are described. The proofs are based...
The maximum nullity over a collection of matrices associated with a graph has been attracting the attention of numerous researchers for at least three decades. Along these lines various zero forcing parameters have been devised and utilized for bounding the maximum nullity. The maximum nullity and zero forcing number, and their positive counterparts, for general families of line graphs associated with graphs possessing a variety of specific properties are analysed. Building upon earlier work, where...
Motivated by problems in radio channel assignments, we consider radio k-labelings of graphs. For a connected graph G and an integer k ≥ 1, a linear radio k-labeling of G is an assignment f of nonnegative integers to the vertices of G such that
,
for any two distinct vertices x and y, where is the distance between x and y in G. A cyclic k-labeling of G is defined analogously by using the cyclic metric on the labels. In both cases, we are interested in minimizing the span of the labeling. The linear...
The main focus of combinatorial dynamics is put on the structure of periodic points (and the corresponding orbits) of topological dynamical systems. The first result in this area is the famous Sharkovsky's theorem which completely describes the coexistence of periods of periodic points for a continuous map from the closed unit interval to itself. One feature of this theorem is that it can be proved using digraphs of a special type (the so-called periodic graphs). In this paper we use Markov graphs...
Certain generating fuctions for multiple zeta values are expressed as values at some point of solutions of linear meromorphic differential equations. We apply asymptotic expansion methods (like the WKB method and the Stokes operators) to solutions of these equations. In this way we give a new proof of the Euler formula ζ(2) = π²/6. In further papers we plan to apply this method to study some third order hypergeometric equation related to ζ(3).
Currently displaying 81 –
100 of
189