The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 141 – 160 of 358

Showing per page

Diagonalization and rationalization of algebraic Laurent series

Boris Adamczewski, Jason P. Bell (2013)

Annales scientifiques de l'École Normale Supérieure

We prove a quantitative version of a result of Furstenberg [20] and Deligne [14] stating that the diagonal of a multivariate algebraic power series with coefficients in a field of positive characteristic is algebraic. As a consequence, we obtain that for every prime p the reduction modulo p of the diagonal of a multivariate algebraic power series f with integer coefficients is an algebraic power series of degree at most p A and height at most A p A , where A is an effective constant that only depends on...

Diameter-invariant graphs

Ondrej Vacek (2005)

Mathematica Bohemica

The diameter of a graph G is the maximal distance between two vertices of  G . A graph G is said to be diameter-edge-invariant, if d ( G - e ) = d ( G ) for all its edges, diameter-vertex-invariant, if d ( G - v ) = d ( G ) for all its vertices and diameter-adding-invariant if d ( G + e ) = d ( e ) for all edges of the complement of the edge set of G . This paper describes some properties of such graphs and gives several existence results and bounds for parameters of diameter-invariant graphs.

Diamond representations of 𝔰𝔩 ( n )

Didier Arnal, Nadia Bel Baraka, Norman J. Wildberger (2006)

Annales mathématiques Blaise Pascal

In [6], there is a graphic description of any irreducible, finite dimensional 𝔰𝔩 ( 3 ) module. This construction, called diamond representation is very simple and can be easily extended to the space of irreducible finite dimensional 𝒰 q ( 𝔰𝔩 ( 3 ) ) -modules.In the present work, we generalize this construction to 𝔰𝔩 ( n ) . We show it is in fact a description of the reduced shape algebra, a quotient of the shape algebra of 𝔰𝔩 ( n ) . The basis used in [6] is thus naturally parametrized with the so called quasi standard Young tableaux....

Dichromatic number, circulant tournaments and Zykov sums of digraphs

Víctor Neumann-Lara (2000)

Discussiones Mathematicae Graph Theory

The dichromatic number dc(D) of a digraph D is the smallest number of colours needed to colour the vertices of D so that no monochromatic directed cycle is created. In this paper the problem of computing the dichromatic number of a Zykov-sum of digraphs over a digraph D is reduced to that of computing a multicovering number of an hypergraph H₁(D) associated to D in a natural way. This result allows us to construct an infinite family of pairwise non isomorphic vertex-critical k-dichromatic circulant...

Currently displaying 141 – 160 of 358