Proof of a determinant evaluation conjectured by Bombieri, Hunt and van Poorten.
We give several different -analogues of the following two congruences of Z.-W. Sun: where is an odd prime, is a positive integer, and is the Jacobi symbol. The proofs of them require the use of some curious -series identities, two of which are related to Franklin’s involution on partitions into distinct parts. We also confirm a conjecture of the latter author and Zeng in 2012.
Nous explicitons la valeur de certains des coefficients binomiaux généralisés associés aux polynômes de Macdonald, c’est-à-dire la valeur en certains points particuliers des polynômes de Macdonald décalés. Ces expressions font intervenir les fonctions hypergéométriques de base .
Binomial coefficients and central trinomial coefficients play important roles in combinatorics. Let p > 3 be a prime. We show that , where the central trinomial coefficient Tₙ is the constant term in the expansion of . We also prove three congruences modulo p³ conjectured by Sun, one of which is . In addition, we get some new combinatorial identities.
We present some extensions of Chu's formulas and several striking generalizations of some well-known combinatorial identities. As applications, some new identities on binomial sums, harmonic numbers, and the generalized harmonic numbers are also derived.
We establish q-analogs for four congruences involving central binomial coefficients. The q-identities necessary for this purpose are shown via the q-WZ method.
For any odd prime p we obtain q-analogues of van Hamme’s and Rodriguez-Villegas’ supercongruences involving products of three binomial coefficients such as for p≡ 3 (mod 4), for p≡ 2 (mod 3), where and . We also prove q-analogues of the Sun brothers’ generalizations of the above supercongruences. Our proofs are elementary in nature and use the theory of basic hypergeometric series and combinatorial q-binomial identities including a new q-Clausen type summation formula.