The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 181 – 200 of 248

Showing per page

q -analogues of two supercongruences of Z.-W. Sun

Cheng-Yang Gu, Victor J. W. Guo (2020)

Czechoslovak Mathematical Journal

We give several different q -analogues of the following two congruences of Z.-W. Sun: k = 0 ( p r - 1 ) / 2 1 8 k 2 k k 2 p r ( mod p 2 ) and k = 0 ( p r - 1 ) / 2 1 16 k 2 k k 3 p r ( mod p 2 ) , where p is an odd prime, r is a positive integer, and ( m n ) is the Jacobi symbol. The proofs of them require the use of some curious q -series identities, two of which are related to Franklin’s involution on partitions into distinct parts. We also confirm a conjecture of the latter author and Zeng in 2012.

Quelques valeurs prises par les polynômes de Macdonald décalés

Michel Lassalle (1999)

Annales de l'institut Fourier

Nous explicitons la valeur de certains des coefficients binomiaux généralisés associés aux polynômes de Macdonald, c’est-à-dire la valeur en certains points particuliers des polynômes de Macdonald décalés. Ces expressions font intervenir les fonctions hypergéométriques de base q .

Some congruences involving binomial coefficients

Hui-Qin Cao, Zhi-Wei Sun (2015)

Colloquium Mathematicae

Binomial coefficients and central trinomial coefficients play important roles in combinatorics. Let p > 3 be a prime. We show that T p - 1 ( p / 3 ) 3 p - 1 ( m o d p ² ) , where the central trinomial coefficient Tₙ is the constant term in the expansion of ( 1 + x + x - 1 ) . We also prove three congruences modulo p³ conjectured by Sun, one of which is k = 0 p - 1 p - 1 k 2 k k ( ( - 1 ) k - ( - 3 ) - k ) ( p / 3 ) ( 3 p - 1 - 1 ) ( m o d p ³ ) . In addition, we get some new combinatorial identities.

Some extensions of Chu's formulas and further combinatorial identities

Said Zriaa, Mohammed Mouçouf (2024)

Mathematica Bohemica

We present some extensions of Chu's formulas and several striking generalizations of some well-known combinatorial identities. As applications, some new identities on binomial sums, harmonic numbers, and the generalized harmonic numbers are also derived.

Some q-supercongruences for truncated basic hypergeometric series

Victor J. W. Guo, Jiang Zeng (2015)

Acta Arithmetica

For any odd prime p we obtain q-analogues of van Hamme’s and Rodriguez-Villegas’ supercongruences involving products of three binomial coefficients such as k = 0 ( p - 1 ) / 2 [ 2 k k ] q ² 3 ( q 2 k ) / ( ( - q ² ; q ² ) ² k ( - q ; q ) ² 2 k ² ) 0 ( m o d [ p ] ² ) for p≡ 3 (mod 4), k = 0 ( p - 1 ) / 2 [ 2 k k ] q ³ ( ( q ; q ³ ) k ( q ² ; q ³ ) k q 3 k ) ( ( q ; q ) k ² ) 0 ( m o d [ p ] ² ) for p≡ 2 (mod 3), where [ p ] = 1 + q + + q p - 1 and ( a ; q ) = ( 1 - a ) ( 1 - a q ) ( 1 - a q n - 1 ) . We also prove q-analogues of the Sun brothers’ generalizations of the above supercongruences. Our proofs are elementary in nature and use the theory of basic hypergeometric series and combinatorial q-binomial identities including a new q-Clausen type summation formula.

Currently displaying 181 – 200 of 248