On the number of prime divisors of a binomial coefficient.
Recent model of lifetime after a heart attack involves some integer coefficients. Our goal is to get these coefficients in simple way and transparent form. To this aim we construct a schema according to a rule which combines the ideas used in the Pascal triangle and the generalized Fibonacci and Lucas numbers
This article considers the eta power . It is proved that the coefficients of in this expression, as polynomials in b, exhibit equidistribution of the coefficients in the nonzero residue classes mod 5 when n = 5j+4. Other symmetries, as well as symmetries for other primes and prime powers, are proved, and some open questions are raised.
Chou, Hsu and Shiue gave some applications of Faà di Bruno's formula to characterize inverse relations. Our aim is to develop some inverse relations connected to the multipartitional type polynomials involving to binomial type sequences.