Displaying 361 – 380 of 394

Showing per page

Arens regularity of lattice-ordered rings

Karim Boulabiar, Jamel Jabeur (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

This work discusses the problem of Arens regularity of a lattice-ordered ring. In this prospect, a counterexample is furnished to show that without extra conditions, a lattice-ordered ring need not be Arens regular. However, as shown in this paper, it turns out that any f -ring in the sense of Birkhoff and Pierce is Arens regular. This result is then used and extended to the more general setting of almost f -rings introduced again by Birkhoff.

Atomicity of lattice effect algebras and their sub-lattice effect algebras

Jan Paseka, Zdena Riečanová (2009)

Kybernetika

We show some families of lattice effect algebras (a common generalization of orthomodular lattices and MV-effect algebras) each element E of which has atomic center C(E) or the subset S(E) of all sharp elements, resp. the center of compatibility B(E) or every block M of E. The atomicity of E or its sub-lattice effect algebras C(E), S(E), B(E) and blocks M of E is very useful equipment for the investigations of its algebraic and topological properties, the existence or smearing of states on E, questions...

Atoms in lattice of radical classes of lattice-ordered groups

Dao Rong Tong (1993)

Archivum Mathematicum

There are several special kinds of radical classes. For example, a product radical class is closed under forming product, a closed-kernel radical class is closed under taking order closures, a K -radical class is closed under taking K -isomorphic images, a polar kernel radical class is closed under taking double polars, etc. The set of all radical classes of the same kind is a complete lattice. In this paper we discuss atoms in these lattices. We prove that every nontrivial element in these lattices...

Currently displaying 361 – 380 of 394