Applications of the theory of partially ordered sets to cluster analysis
A covariant representation of the category of locales by approximate maps (mimicking a natural representation of continuous maps between spaces in which one approximates points by small open sets) is constructed. It is shown that it can be given a Kleisli shape, as a part of a more general Kleisli representation of meet preserving maps. Also, we present the spectrum adjunction in this approximation setting.
Generalized MV-algebras (= GMV-algebras) are non-commutative generalizations of MV-algebras. They are an algebraic counterpart of the non-commutative Łukasiewicz infinite valued fuzzy logic. The paper investigates approximation spaces in GMV-algebras based on their normal ideals.
We prove that every Archimedean atomic lattice effect algebra the center of which coincides with the set of all sharp elements is isomorphic to a subdirect product of horizontal sums of finite chains, and conversely. We show that every such effect algebra can be densely embedded into a complete effect algebra (its MacNeille completion) and that there exists an order continuous state on it.
This paper extends the notion of an archimedean frame to frames which are not necessarily algebraic. The new notion is called joinfitness and is Choice-free. Assuming the Axiom of Choice and for compact normal algebraic frames, the new and the old coincide. There is a subfunctor from the category of compact normal frames with skeletal maps with joinfit values, which is almost a coreflection. Conditions making it so are briefly discussed. The concept of an infinitesimal element arises naturally,...