Bi-ideals in ordered semigroups and ordered groups.
Two operators are constructed which make it possible to transform ternary relations into binary relations defined on binary relations and vice versa. A possible graphical representation of ternary relations is described.
A bipartite pseudo MV-algebra A is a pseudo MV-algebra such that A = M ∪ M ̃ for some proper ideal M of A. This class of pseudo MV-algebras, denoted BP, is investigated. The class of pseudo MV-algebras A such that A = M ∪ M ̃ for all maximal ideals M of A, denoted BP₀, is also studied and characterized.
BL-algebras [Hajek] rise as Lindenbaum algebras from certain logical axioms familiar in fuzzy logic framework. BL-algebras are studied by means of deductive systems and co-annihilators. Duals of many theorems known to hold in MV-algebra theory remain valid for BL-algebras, too.
We prove the following theorem: Given a⊆ω and , if for some and all u ∈ WO of length η, a is , then a is .We use this result to give a new, forcing-free, proof of Leo Harrington’s theorem: -Turing-determinacy implies the existence of .
The aim of this paper is to show that every infinite Boolean algebra which admits a countable minimally acting group contains a dense projective subalgebra.